一類新型平均場偏微分方程的Sobolev解的概率解釋
[Abstract]:In 2009, Buckdahn, Djehiche, Li and Peng[1] took the lead in introducing the mean field backward stochastic differential equations (simple as, MFBSDEs). These equations are concerned. They have studied the relationship between MFBSDEs and the corresponding partial differential equation (Li, PDEs). This paper mainly deals with a new class of Weak Solutions of the mean field PDEs. The existence and uniqueness of the solution of Sobolev is not dependent on the result of the comparison theorem, so the coefficient of the equation can be dependent on (?). The main equations of this paper are as follows: the mean field SDE: mean field BSDE: and the new mean field PDE: first part: the main hypothesis conditions are: the 3.1: (A1) (I) function B and sigma (?), X satisfaction (II) B (., 0,0) and sigma (. 0,0) are F- sequential measurable continuous functions and exist constant l0, making any 0 less t less than T, (?), X (?) R~d (A2) is a measurable random variable. Constructs f importantly Marxism importantly Marxist Marxist Marxist Marxist Marxist Marxist Marxist Marxist societies traditions Marxism traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Gamma: The Lipschitz continuous function of n * D. (A3) Rd * Rn x R x D, gas to any s [0, T]. Under assumption 3.1, the average field PDE (3) has a unique solution and satisfies the following relational expression Yst, x=u (s, Xxt, x), Zst, x= Dxu (s, Xst, x)). With the aid of random currents, equivalent norms and test functions, we can finally get the only solution of average field (3). Second: First, we study the existence and uniqueness theorem of MFBSDE (2) solution with global monotone coefficients under the condition of the following hypothesis 4.1 conditions. 4.1: (H1) is assumed to be arbitrarily fixed (omega, t), f (omega, t,,,.) continuous; (H2) there exists a process FT HF2 (? 0, T; R) and a constant L0. Beings Marxist Marxist traditions Marxist Marxist societies veins veins occasions veins veins veins occasions veins veins veins veins occasions veins veins veins veins veins veins occasions veins traditions souls veins veins veins occasions veins traditions souls veins veins veins veins veins occasions veins veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins it is the same. Z2|2 + |z1-z2|2). Second, we study the existence and uniqueness of the MFBSDE (2) solution with local monotone coefficient, assuming the following conditions are established, assuming that 4.2: (H2,) exists L0 and 0 < < < 1 >, and makes |f (T, y, Z, y, z) less than equal. Derive Rn clauses importantly Marxist traditions Marxist Marxist souls societies veins veins veins occasions veins veins veins veins veins veins occasions veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins Y, y, Z2, Z2) |2LN (|z1-z2|2 + |z1-z2|2). Then, we can get the assumption that 4.1- (H1) and hypothesis 4.2 are set up and satisfy the 1 + exp (2L + 2| lambda [lambda] [[lambda], theta 2) - 0. (4) theta is a arbitrarily fixed constant, which makes 0 theta 1-2 alpha (2) with local monotone coefficient. Third: Third: Third: Third: Third: before third: Third: before third: Third: Third: before third: Third: Third: before We can begin to study the existence and uniqueness of the Sobolev solution of the corresponding mean field PDE (3). First, we can get the following hypothesis: assuming 4.3: (B1) 6, sigma satisfies the hypothesis 3.1- (A1), (B2) f, and the hypothesis is assumed to be 3.1- (A2) - (I). , x1, X2, x1, Rn, Rn, y, Y1, Rn, Rn, Y1, Rn, Rn, Rn, Y1, Rn, Y1 less than 1, 1 and 2 |y1-y2|2. (B4) |f (T, (?), x, y, z), z) and K (x, 0,0,0,0) and satisfy linear growth. The corresponding local monotonicity hypothesis, as follows: assuming 4.4: (B3,) for arbitrary N N, LN0, N, N R. -f (T, X2, X2, X2, X2, X2, Y1, Y1, Y1, Y1, Y1) they are (?). So, we can get the only Sobolev solution of the mean field PDE (3) with local monotone coefficient under the assumption that 4.3- (B1), (B2), hypothesis 4.4 and (4) are established.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O211.63
【相似文獻】
相關(guān)期刊論文 前10條
1 劉保華;李家榮;;手征相變的平均場分析[J];高能物理與核物理;1988年06期
2 馬鶴來,蘇育嵩;平均場分解初探[J];海洋學(xué)報(中文版);1987年04期
3 徐躬耦;;非厄密平均場的動態(tài)描述——一個簡化模型之例[J];高能物理與核物理;1988年02期
4 馬鶴來,蘇育嵩;平均場分解初探[J];青島海洋大學(xué)學(xué)報;1989年S1期
5 馬中玉,,陳寶秋;1.28 超核性質(zhì)的相對論平均場研究[J];中國原子能科學(xué)研究院年報;1995年00期
6 寧平治,譚玉紅,李磊,羅延安;超核的相對論平均場計算(英文)[J];高能物理與核物理;2004年12期
7 魏成文;;對平均場模型的分析和改進[J];河北師范大學(xué)學(xué)報;1982年02期
8 沈姚崧,任中洲;對Λ超核的相對論平均場計算[J];高能物理與核物理;1997年09期
9 鐘顯輝,李磊,張小兵,寧平治;A~50區(qū)同位素的相對論平均場研究[J];高能物理與核物理;2003年07期
10 胡西多,邵明珠,羅詩裕,劉勇生,朱德海;二維晶化束的平均場概念和單粒子模型(Ⅱ)[J];高能物理與核物理;2004年02期
相關(guān)會議論文 前6條
1 呂炳楠;周善貴;趙恩廣;;基于相對論平均場模型系統(tǒng)研究原子核裂變位壘[A];第十四屆全國核物理大會暨第十屆會員代表大會論文集[C];2010年
2 潘峰;;嚴(yán)格可解的平均場加對力模型綜述[A];第十次全國核結(jié)構(gòu)研討會暨第六次全國核結(jié)構(gòu)專題討論會會議文集(二)[C];2004年
3 楊丁;馬中玉;曹李剛;;連續(xù)相對論無規(guī)位相近似的研究[A];二00九全國核反應(yīng)會暨生物物理與核物理交叉前沿研討會論文摘要集[C];2009年
4 楊泗春;孟杰;周善貴;;基于相對論平均場的解析延拓方法對非束縛態(tài)能量和寬度的研究[A];Radioactive Nuclear Beam Physics--Proceedings of CCAST (World Laboratory) Workshop[C];2000年
5 李磊;黨蕾;鐘顯輝;寧平治;;K-介子平均自由程的相對論平均場研究[A];第十一屆全國中高能核物理大會暨第六屆全國中高能核物理專題研討會會議手冊[C];2006年
6 申虹;;夸克平均場模型研究有限核及超核[A];第十二屆全國核物理大會論文集(上)[C];2004年
相關(guān)博士學(xué)位論文 前3條
1 徐瑞民;平均場隨機系統(tǒng)理論及其應(yīng)用[D];山東大學(xué);2014年
2 李瑞敬;平均場隨機系統(tǒng)最優(yōu)控制及其相關(guān)問題研究[D];華中科技大學(xué);2015年
3 王延楠;核物質(zhì)中的平均場及高階項貢獻的研究[D];南開大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 黃鵬琰;平均場倒向隨機系統(tǒng)微分博弈理論及其應(yīng)用[D];山東大學(xué);2015年
2 顏浩;平方增長的平均場倒向隨機微分方程[D];山東大學(xué);2015年
3 張少鵬;平均場博弈模型及其在港口煤炭企業(yè)中的應(yīng)用研究[D];燕山大學(xué);2016年
4 葉雨松;基于平均場方法對社會自組織行為的研究[D];中國地質(zhì)大學(xué)(北京);2016年
5 王壘;一般情形下的平均場隨機最大值原理[D];山東大學(xué);2017年
6 張曉;一般情形的平均場倒向隨機微分方程[D];山東大學(xué);2017年
7 苗穎婷;一類新型平均場偏微分方程的Sobolev解的概率解釋[D];山東大學(xué);2017年
8 呼黎明;對稱保持平均場理論解決一維簡單液體以及溶質(zhì)-溶液體系[D];吉林大學(xué);2017年
9 杜蘅;平均場倒向隨機微分方程的性質(zhì)及應(yīng)用[D];山東大學(xué);2012年
10 婁延俊;平均場倒向隨機微分方程的線性二次最優(yōu)控制及非零和微分對策[D];山東大學(xué);2013年
本文編號:2171795
本文鏈接:http://sikaile.net/kejilunwen/yysx/2171795.html