天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

一類新型平均場偏微分方程的Sobolev解的概率解釋

發(fā)布時間:2018-08-08 12:31
【摘要】:自2009年Buckdahn,Djehiche,Li和Peng[1]率先引入平均場倒向隨機微分方程(簡記為,MFBSDEs),這類方程就倍受關(guān)注。他們研究了 MFBSDEs和相應(yīng)偏微分方程(簡記為,PDEs)粘性解的關(guān)系。本文主要研究的是一類新型的平均場PDEs的弱解一 Sobolev解。與粘性解不同的是Sobolev解的存在唯一性不需要依賴于比較定理的結(jié)果,故方程的系數(shù)可以依賴于(?)。本文主要研究的方程形式如下:平均場SDE:平均場BSDE:以及新型平均場PDE:第一部分:主要的假設(shè)條件有:假設(shè)3.1:(A1)(i)函數(shù)b和σ關(guān)于(?),x滿足Lipschitz條件。(ii)b(.,0,0)和σ(.,0,0)是F-循序可測連續(xù)函數(shù)且存在常數(shù)l0,使得對任意的0≤t≤T,(?),x(?)R~d(A2)(i)Φ是F(?)B(R)-可測隨機變量,f(·,(?),x,(?),y,(?),z)是F-適應(yīng)的可測過程,對任意的((?),x,(?),y,(?),z)∈ R~d × R~d × R~n × R~n × R~n×d × R~n×d 成立。且 f(t,(?),x,0,0,0,0)∈H_F~2(0,T;R~n)。(ii)f 關(guān)于 (?),x,(?),y,(?),z 滿足 Lipschitz 條件。(iii)f和Φ滿足線性增長條件,也就是說,存在c0,使得a.s.對任意的(?),x∈R~d,|f(t,(?),x,0,0,0,0)| + |Φ((?),x)| ≤c(1+|(?)|+|x|).(iv)G,θ,Ψ,κ:R~d→R~d,∧:R~d → R~d,Γ:R~n×d→R~n×d 的 Lipschitz 連續(xù)函數(shù)。(A3)給定((?))∈Rd × Rn × R×d,氣對任意的s ∈[0,T],(x,y,z)→f(s,(?),x,(?),y,(?),z)∈Cb3,3,3(Rd × Rn × Rn×d,Rn).(A4)b ∈C61,3,3([0,T]× Rd × Rd,Rd)且 σ ∈Cb1,3,3([[0,T]× Rd ×RRd,Rd×d)。同時,我們給出值函數(shù)的定義為u(t,x)=Ytt,x。那么,在假設(shè)3.1下,平均場PDE(3)存在唯一解,且滿足以下關(guān)系式Y(jié)st,x=u(s,Xxt,x),Zst,x= Dxu(s,Xst,x)σ(s,E[θ(Xs0,x0)],Xst,x).借助隨機逆流、等價范數(shù)及測試函數(shù),最終我們可以得到在假設(shè)3.1-(A2),(A4)下,u(t,x)=Ytt,x是平均場 PDE(3)的唯一 Sobolev 解。第二部分:第一,我們研究的是以下假設(shè)4.1條件成立的情況下,帶全局單調(diào)系數(shù)的MFBSDE(2)解的存在唯一性定理。假設(shè)4.1:(H1)對任意固定的(ω,t),f(ω,t,.,.,.,.)連續(xù);(H2)存在一過程ft∈HF2(0,T;R)和一個常數(shù)L0,使得|f(i,(?),(?),y,z)|≤ft + L(|(?)| + |(?)| + |y| + |z|).(H3)存在常數(shù)λ1,λ2 ∈ R,使得對任意的t∈[0,T],yi,(?)i ∈ Rn,z,(?) ∈ Rn×d(i = 1,2),(y1-y2)(f(t,(?),y1,(?),z)-f(t,(?),y2,(?),z))≤λ1(y1-y2)((?))+λ2|y1-y2|2.(H4)存在 L0,使得 P-a.s.對任意的t∈[0,T],y,y ∈ Rn,zi,zi ∈ Rn×d(i = 1,2),|f(t,y,y,z1,z1)-f(t,y,y,z2,z2)|2 ≤ L(|z1-z2|2 + |z1-z2|2).第二,我們研究的是帶局部單調(diào)系數(shù)的MFBSDE(2)解的存在性和唯一性,假定如下條件成立,假設(shè)4.2:(H2,)存在L0和0 ≤ γ ≤ 1,使得|f(t,y,z,y,z)| ≤L(1 + |y|γ +|z|γ + |y|γ + |z|γ).(H3')對任意的N ∈ N,存在常數(shù)λN,λN∈R,使得對任意的t ∈[0,T],yi,yi∈Rn,z,z ∈ Rn×d 滿足"yi|,|yi|,|z|,|z|≤N(i = 1,2),有(y1-y2)(f(t,y1,y1,z,z)-f(t,y2,y2,z,z))≤λN(y1-y2)(y1-y2)+ λN|y1-y2|2.(H4')對任意的N ∈N,存在LN0,使得P-a.s對任任的的f ∈[0,T],y,y∈Rn,zi,zi∈Rn×d滿足|yi|,|yi|,|z|,|z|≤N(i=1,2),成立|f(t,y,y,z1,z1)-f(t,y,y,z2,z2)|2LN(|z1-z2|2 + |z1-z2|2).那么,我們可以得到在假設(shè)4.1-(H1)和假設(shè)4.2成立的情況下,且滿足1 + exp(2L + 2|λN|+2λN-+ +2LNθ-1 + 2)→0,當(dāng)N→∞時,(4)其中θ是一個任意固定的常數(shù),使得0θ1-2α。帶局部單調(diào)系數(shù)的MFBSDE(2)有唯一解(Y,Z)。第三:在前面的結(jié)論成立的情形下,我們可以開始研究相應(yīng)平均場PDE(3)的Sobolev解的存在唯一性。首先,我們可以得到在以下假設(shè)下:假設(shè)4.3:(B1)6,σ 滿足假設(shè) 3.1-(A1),(A4)。(B2)f,Φ 滿足假設(shè) 3.1-(A2)-(i)(iii),以及假設(shè) 3.1-(A2)-(iv)成立,Φ ∈ L2(Rd,ρ(x)dx)。(B3)對任意的0≤t≤T,x1,x2,x1,x2∈Rn,y,y1,y2,y,y1,y2∈Rn,z,z1,z2,z,z1,z2 Rn×d,存在 C0,λ1,A2 ∈R,使得|Φ(x1,x1)-Φ(x2,x2)|2 +|f(t,x1,x1,y,y,z1,Z1)-f(t,x2,x2,y,y,z2,z2)|2C(|x1-x2|2 + |x1-x2|2 + |z1-z2|2 + |z1-z2|2).(y1-y2)(f(t,x1,x1,y1,y1,z,z)-f(t,x2,x2,y2,y2,z,z))≤ λ1(y1-y2)(y1-y2)+ λ2|y1-y2|2.(B4)|f(t,(?),x,(?),y,(?),z)| ≤ |f(t,(?),x,0,0,0,0)| + K(|y| + |y| + |z| + |z|),f(t,x,x,0,0,0,0)∈ L2(Rd,ρ(x)dx)且滿足線性增長。值函數(shù)u(t,x):=Ytt,x是帶全局單調(diào)系數(shù)的平均場PDE(3)的唯一Sobolev解。接著我們也可以得到在局部單調(diào)性的假設(shè)下平均場PDE的Sobolev解的存在唯一性定理的結(jié)論。相應(yīng)的局部單調(diào)性假設(shè),如下:假設(shè)4.4:(B3,)對任意的N ∈ N,存在LN0,λN,λN∈R,使得對x1,x1,x2,x2∈Rd,y1,y1,y2,y2∈Rn,z1,z1,z2,z2∈Rn×d,滿足|y1|,|y1|,|y2|,|y2|,|z1|,|z1|,|z2|,|z2|≤N,成立|Φ(x1,x1)-Φ(x2,x2)|2 + |f(t,x1,x1,y1,y1,z1,z1)-f(t,x2,x2,y1,y1,z2,Z2)|2≤ LN(|x1-x2|2 + |x1-x2|2 + |z1-Z2|2 + |z1-z2|2),(y1-y2)(f(t,x1,x,x1,y1,y1,z1,z1)-f(t,x1,x1,y2,y2,z1,z1))≤ λN(y1-y2)(y1-y2)+ λN|y1-y2|2(B4,)存在K0和0≤γ≤1,使得|f(t,(?),x,(?),y,(?),z)|≤K(1 +|y|γ +|z|γ+ |y|γ +|z|γ),對任意的t,(?),x,(?),y,(?),z.于是,我們就可以得到在假設(shè)4.3-(B1),(B2),假設(shè)4.4和(4)式成立的條件下,帶局部單調(diào)系數(shù)的平均場PDE(3)式存在唯一的Sobolev解。
[Abstract]:In 2009, Buckdahn, Djehiche, Li and Peng[1] took the lead in introducing the mean field backward stochastic differential equations (simple as, MFBSDEs). These equations are concerned. They have studied the relationship between MFBSDEs and the corresponding partial differential equation (Li, PDEs). This paper mainly deals with a new class of Weak Solutions of the mean field PDEs. The existence and uniqueness of the solution of Sobolev is not dependent on the result of the comparison theorem, so the coefficient of the equation can be dependent on (?). The main equations of this paper are as follows: the mean field SDE: mean field BSDE: and the new mean field PDE: first part: the main hypothesis conditions are: the 3.1: (A1) (I) function B and sigma (?), X satisfaction (II) B (., 0,0) and sigma (. 0,0) are F- sequential measurable continuous functions and exist constant l0, making any 0 less t less than T, (?), X (?) R~d (A2) is a measurable random variable. Constructs f importantly Marxism importantly Marxist Marxist Marxist Marxist Marxist Marxist Marxist Marxist societies traditions Marxism traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Gamma: The Lipschitz continuous function of n * D. (A3) Rd * Rn x R x D, gas to any s [0, T]. Under assumption 3.1, the average field PDE (3) has a unique solution and satisfies the following relational expression Yst, x=u (s, Xxt, x), Zst, x= Dxu (s, Xst, x)). With the aid of random currents, equivalent norms and test functions, we can finally get the only solution of average field (3). Second: First, we study the existence and uniqueness theorem of MFBSDE (2) solution with global monotone coefficients under the condition of the following hypothesis 4.1 conditions. 4.1: (H1) is assumed to be arbitrarily fixed (omega, t), f (omega, t,,,.) continuous; (H2) there exists a process FT HF2 (? 0, T; R) and a constant L0. Beings Marxist Marxist traditions Marxist Marxist societies veins veins occasions veins veins veins occasions veins veins veins veins occasions veins veins veins veins veins veins occasions veins traditions souls veins veins veins occasions veins traditions souls veins veins veins veins veins occasions veins veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins it is the same. Z2|2 + |z1-z2|2). Second, we study the existence and uniqueness of the MFBSDE (2) solution with local monotone coefficient, assuming the following conditions are established, assuming that 4.2: (H2,) exists L0 and 0 < < < 1 >, and makes |f (T, y, Z, y, z) less than equal. Derive Rn clauses importantly Marxist traditions Marxist Marxist souls societies veins veins veins occasions veins veins veins veins veins veins occasions veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins Y, y, Z2, Z2) |2LN (|z1-z2|2 + |z1-z2|2). Then, we can get the assumption that 4.1- (H1) and hypothesis 4.2 are set up and satisfy the 1 + exp (2L + 2| lambda [lambda] [[lambda], theta 2) - 0. (4) theta is a arbitrarily fixed constant, which makes 0 theta 1-2 alpha (2) with local monotone coefficient. Third: Third: Third: Third: Third: before third: Third: before third: Third: Third: before third: Third: Third: before We can begin to study the existence and uniqueness of the Sobolev solution of the corresponding mean field PDE (3). First, we can get the following hypothesis: assuming 4.3: (B1) 6, sigma satisfies the hypothesis 3.1- (A1), (B2) f, and the hypothesis is assumed to be 3.1- (A2) - (I). , x1, X2, x1, Rn, Rn, y, Y1, Rn, Rn, Y1, Rn, Rn, Rn, Y1, Rn, Y1 less than 1, 1 and 2 |y1-y2|2. (B4) |f (T, (?), x, y, z), z) and K (x, 0,0,0,0) and satisfy linear growth. The corresponding local monotonicity hypothesis, as follows: assuming 4.4: (B3,) for arbitrary N N, LN0, N, N R. -f (T, X2, X2, X2, X2, X2, Y1, Y1, Y1, Y1, Y1) they are (?). So, we can get the only Sobolev solution of the mean field PDE (3) with local monotone coefficient under the assumption that 4.3- (B1), (B2), hypothesis 4.4 and (4) are established.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O211.63

【相似文獻】

相關(guān)期刊論文 前10條

1 劉保華;李家榮;;手征相變的平均場分析[J];高能物理與核物理;1988年06期

2 馬鶴來,蘇育嵩;平均場分解初探[J];海洋學(xué)報(中文版);1987年04期

3 徐躬耦;;非厄密平均場的動態(tài)描述——一個簡化模型之例[J];高能物理與核物理;1988年02期

4 馬鶴來,蘇育嵩;平均場分解初探[J];青島海洋大學(xué)學(xué)報;1989年S1期

5 馬中玉,,陳寶秋;1.28 超核性質(zhì)的相對論平均場研究[J];中國原子能科學(xué)研究院年報;1995年00期

6 寧平治,譚玉紅,李磊,羅延安;超核的相對論平均場計算(英文)[J];高能物理與核物理;2004年12期

7 魏成文;;對平均場模型的分析和改進[J];河北師范大學(xué)學(xué)報;1982年02期

8 沈姚崧,任中洲;對Λ超核的相對論平均場計算[J];高能物理與核物理;1997年09期

9 鐘顯輝,李磊,張小兵,寧平治;A~50區(qū)同位素的相對論平均場研究[J];高能物理與核物理;2003年07期

10 胡西多,邵明珠,羅詩裕,劉勇生,朱德海;二維晶化束的平均場概念和單粒子模型(Ⅱ)[J];高能物理與核物理;2004年02期

相關(guān)會議論文 前6條

1 呂炳楠;周善貴;趙恩廣;;基于相對論平均場模型系統(tǒng)研究原子核裂變位壘[A];第十四屆全國核物理大會暨第十屆會員代表大會論文集[C];2010年

2 潘峰;;嚴(yán)格可解的平均場加對力模型綜述[A];第十次全國核結(jié)構(gòu)研討會暨第六次全國核結(jié)構(gòu)專題討論會會議文集(二)[C];2004年

3 楊丁;馬中玉;曹李剛;;連續(xù)相對論無規(guī)位相近似的研究[A];二00九全國核反應(yīng)會暨生物物理與核物理交叉前沿研討會論文摘要集[C];2009年

4 楊泗春;孟杰;周善貴;;基于相對論平均場的解析延拓方法對非束縛態(tài)能量和寬度的研究[A];Radioactive Nuclear Beam Physics--Proceedings of CCAST (World Laboratory) Workshop[C];2000年

5 李磊;黨蕾;鐘顯輝;寧平治;;K-介子平均自由程的相對論平均場研究[A];第十一屆全國中高能核物理大會暨第六屆全國中高能核物理專題研討會會議手冊[C];2006年

6 申虹;;夸克平均場模型研究有限核及超核[A];第十二屆全國核物理大會論文集(上)[C];2004年

相關(guān)博士學(xué)位論文 前3條

1 徐瑞民;平均場隨機系統(tǒng)理論及其應(yīng)用[D];山東大學(xué);2014年

2 李瑞敬;平均場隨機系統(tǒng)最優(yōu)控制及其相關(guān)問題研究[D];華中科技大學(xué);2015年

3 王延楠;核物質(zhì)中的平均場及高階項貢獻的研究[D];南開大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 黃鵬琰;平均場倒向隨機系統(tǒng)微分博弈理論及其應(yīng)用[D];山東大學(xué);2015年

2 顏浩;平方增長的平均場倒向隨機微分方程[D];山東大學(xué);2015年

3 張少鵬;平均場博弈模型及其在港口煤炭企業(yè)中的應(yīng)用研究[D];燕山大學(xué);2016年

4 葉雨松;基于平均場方法對社會自組織行為的研究[D];中國地質(zhì)大學(xué)(北京);2016年

5 王壘;一般情形下的平均場隨機最大值原理[D];山東大學(xué);2017年

6 張曉;一般情形的平均場倒向隨機微分方程[D];山東大學(xué);2017年

7 苗穎婷;一類新型平均場偏微分方程的Sobolev解的概率解釋[D];山東大學(xué);2017年

8 呼黎明;對稱保持平均場理論解決一維簡單液體以及溶質(zhì)-溶液體系[D];吉林大學(xué);2017年

9 杜蘅;平均場倒向隨機微分方程的性質(zhì)及應(yīng)用[D];山東大學(xué);2012年

10 婁延俊;平均場倒向隨機微分方程的線性二次最優(yōu)控制及非零和微分對策[D];山東大學(xué);2013年



本文編號:2171795

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2171795.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f685e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com