空間異質(zhì)環(huán)境中SIS傳染病模型若干問(wèn)題研究
[Abstract]:Infectious diseases have been accompanied by the development of human society. In history, the continuous outbreak and spread of infectious diseases have brought great disasters to human beings. Although today's social science and technology continue to develop and medical conditions have been greatly improved, the WHO (WHO) claims that infectious diseases are still the greatest threat to human health. It is necessary to understand the distribution of the disease, the law of space-time transmission and the appropriate control strategy. Since the 1927 American mathematician Kermack and the Scotland medical scientist, the epidemiologist McKendrick constructed the famous SIR "warehouse room" model, the mathematical model has become a study of the law of disease transmission, the assessment of the risk of infection, and the optimization of the control strategy. In the early stage, the researchers mainly studied the space independent ordinary differential system, which only responded to the dynamic characteristics of the time lapse. In order to describe the reality more truly, the researchers found that space diffusion was an important factor affecting the spread of disease. In recent years, with the further research, researchers have gradually realized that space diffusion and environmental heterogeneity have played an important role in the transmission of some infectious diseases, such as influenza, malaria, West Nile virus and so on. In addition, periodicity, convection, media coverage, and the allocation of limited medical resources in the transmission of infectious diseases This thesis mainly focuses on the effects of spatial heterogeneity, periodic, convection, nonlinear recovery and nonlinear incidence on the spread and decline of SIS infectious disease model. The main research work of this paper is as follows. In the second chapter, the second chapter mainly studies an infectious disease model with free boundary and convective effects in the heterogeneous environment. First, the existence and uniqueness and the positive nature of the global solution are obtained by using the Lp theory of the initial boundary value problem of the parabolic equation, the Zorn lemma and the compression mapping principle. It introduces the definition and the analytic properties of the risk index R0F (T) of the free boundary problem. By means of the risk index RF (T), by constructing the fine upper solution and the lower solution, the two alternative theorem of the spread and decline of the disease is obtained, and the criterion of the spread and regression is given. Near expansion speed. The numerical simulation gives the effect of convection intensity and expansion ability on the edge of the infected region. These results are completely different from the kinetic properties of the fixed area. The third chapter discusses the infectious disease model with free boundary in the periodic heterogeneous environment. First, the basic regeneration number is introduced, and two is given. An explicit expression under special circumstances. The risk index R0F (tau) of the free boundary problem is given by means of the aid spectrum radius. The index is closely related to the principal eigenvalues of the corresponding periodic parabolic problem. The maximum modulus principle, the upper and lower solutions, the spectral analysis and the other techniques of the partial differential equation prove the spread and decline of the disease. In the fourth chapter, a diffusion model of SIS infectious disease with the influence of media coverage in a heterogeneous environment is proposed. In the model, we use the factor of media coverage to reflect the nonlinear contact rate of the disease. First, we use the variational method to give the definition and the analytic properties of the basic regeneration number with media coverage and diffusion in the heterogeneous environment. Then we give the existence of the disease-free equilibrium point and the equilibrium point of the disease, and then use the upper and lower solutions and the monotone iterative sequence. The classical semigroup theory and the strong extremum principle prove that the disease free equilibrium point is globally asymptotically stable when R0D1, and when R0D1, the global asymptotic stability of the equilibrium point of the disease is proved. The numerical simulation shows that the risk of infection of the disease will be reduced if the media coverage is increased, thus the infectious disease can be controlled quickly and effectively. In the fifth chapter, the SIS infectious disease model, which is affected by the allocation of limited medical resources in the spatial heterogeneity environment, is considered. The effects of environmental heterogeneity and the allocation of limited medical resources on the spread and regression of the disease are discussed. First, the threshold R0* and R0* related to the maximum and minimum recovery rate are given by the variational method. By means of these two thresholds, as well as the method of the upper and lower solutions, the monotone iterative dynamics, the multiplication and multiplication technique, the existence, uniqueness and stability of the disease free equilibrium point and the equilibrium point of the disease are proved. The numerical simulation shows that the allocation of the appropriate number of beds is not essential for the control of the disease. Our theoretical results are for public health. The management department provides a theoretical basis for the optimization of the allocation of limited medical resources. In the sixth chapter, we have summarized the main work of this paper, and on this basis, we made further plans for the future research work.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王達(dá),張丹松;與年齡相關(guān)具有空間結(jié)構(gòu)的非線性傳染病模型的周期解[J];吉林化工學(xué)院學(xué)報(bào);1997年02期
2 李建民,白天帥;考慮出生與死亡因素的傳染病模型[J];平頂山師專學(xué)報(bào);2000年02期
3 竇家維;一類具有擴(kuò)散的SI傳染病模型[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
4 高淑京;具有常數(shù)脈沖免疫SI傳染病模型的穩(wěn)定性[J];廣州大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
5 李建全,楊友社;一類帶有確定隔離期的傳染病模型的穩(wěn)定性分析[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年03期
6 岳錫亭,潘家齊;人口有增長(zhǎng)傳染病模型的定性分析[J];長(zhǎng)春工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年03期
7 朱慶國(guó);關(guān)于一類傳染病模型的空間周期解及混沌[J];工程數(shù)學(xué)學(xué)報(bào);2005年06期
8 李穎路;雷磊;馬潤(rùn)年;;一類離散的傳染病模型分析[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
9 傅朝金;黃振華;;時(shí)滯傳染病模型的指數(shù)穩(wěn)定性[J];生物數(shù)學(xué)學(xué)報(bào);2007年02期
10 張群英;張來(lái);朱石花;;一類具擴(kuò)散的兩種群相互作用的傳染病模型[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期
相關(guān)會(huì)議論文 前2條
1 陳軍杰;朱靜芬;;依賴于總?cè)巳簲?shù)接觸率的SEI傳染病模型的穩(wěn)定性[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)研究進(jìn)展——2002(9)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第9屆學(xué)術(shù)研討會(huì)論文集[C];2002年
2 陳方方;曹保鋒;洪靈;;一類具有時(shí)滯及非線性飽和特性發(fā)生率的SIRS傳染病模型的穩(wěn)定性與Hopf分岔分析[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)駐加拿大記者 杜華斌;數(shù)學(xué)模型:防疫決策的“特別助理”[N];科技日?qǐng)?bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 鐘曉靜;隨機(jī)生物系統(tǒng)的動(dòng)力學(xué)研究[D];華南理工大學(xué);2015年
2 覃文杰;有限資源下非光滑生物系統(tǒng)理論與應(yīng)用研究[D];陜西師范大學(xué);2015年
3 孫新國(guó);具時(shí)滯和免疫反應(yīng)的傳染病模型動(dòng)力學(xué)性質(zhì)研究[D];哈爾濱工業(yè)大學(xué);2015年
4 郭英佳;若干生物學(xué)和傳染病學(xué)模型的動(dòng)力學(xué)研究[D];吉林大學(xué);2015年
5 張向華;幾類帶Lévy跳的隨機(jī)傳染病模型的動(dòng)力學(xué)性質(zhì)分析[D];哈爾濱工業(yè)大學(xué);2014年
6 王喜英;具有切換參數(shù)和脈沖控制的HIV傳染病模型的動(dòng)力學(xué)研究[D];西北工業(yè)大學(xué);2015年
7 樊小琳;種群、傳染病及復(fù)雜網(wǎng)絡(luò)微分方程模型動(dòng)力學(xué)行為研究[D];新疆大學(xué);2016年
8 龐彥尼;隨機(jī)SIQS傳染病模型的動(dòng)力學(xué)研究[D];吉林大學(xué);2015年
9 葛靜;空間異質(zhì)環(huán)境中SIS傳染病模型若干問(wèn)題研究[D];揚(yáng)州大學(xué);2017年
10 林玉國(guó);白噪聲擾動(dòng)下的隨機(jī)傳染病模型動(dòng)力學(xué)行為[D];東北師范大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張巍巍;具有人口遷移和入境檢測(cè)隔離措施的傳染病模型分析[D];哈爾濱工業(yè)大學(xué);2010年
2 代洪祥;一類具有隔離項(xiàng)的隨機(jī)SIQS傳染病模型全局正解的漸近行為[D];暨南大學(xué);2015年
3 肖延舉;一類具有標(biāo)準(zhǔn)發(fā)生率與飽和治療函數(shù)的SIRS傳染病模型的穩(wěn)定性和Bogdanov-Takens分支[D];東北師范大學(xué);2015年
4 劉洋;隨機(jī)變?nèi)丝赟ISV傳染病模型的動(dòng)力學(xué)行為[D];東北師范大學(xué);2015年
5 楊秋野;具有潛伏期的傳染病的預(yù)防接種策略[D];渤海大學(xué);2015年
6 高連英;三類具有非線性傳染率的傳染病模型的研究[D];渤海大學(xué);2015年
7 吉學(xué)盛;幾類傳染病模型的研究[D];集美大學(xué);2015年
8 劉爽;隨機(jī)多群體SIS傳染病模型的動(dòng)力學(xué)行為[D];東北師范大學(xué);2015年
9 牛秀欽;順序數(shù)據(jù)同化方法在傳染病模型模擬預(yù)測(cè)中的應(yīng)用[D];蘭州大學(xué);2015年
10 李文娟;一類離散SIRS傳染病模型的穩(wěn)定性分析[D];山西大學(xué);2015年
,本文編號(hào):2154089
本文鏈接:http://sikaile.net/kejilunwen/yysx/2154089.html