天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

空間異質(zhì)環(huán)境中SIS傳染病模型若干問(wèn)題研究

發(fā)布時(shí)間:2018-07-30 06:22
【摘要】:傳染病一直伴隨著人類社會(huì)的發(fā)展.歷史上,傳染病的不斷爆發(fā)和傳播給人類帶來(lái)了巨大的災(zāi)難.盡管當(dāng)今社會(huì)科學(xué)技術(shù)持續(xù)發(fā)展、醫(yī)療條件也得到了很大的改善,然而世界衛(wèi)生組織(WHO)宣稱傳染病仍是人類健康的最大威脅.因此,人們有必要了解疾病的分布情況、時(shí)空傳播規(guī)律并采取適當(dāng)?shù)目刂撇呗?自1927年美國(guó)數(shù)學(xué)家Kermack和蘇格蘭醫(yī)學(xué)家、流行病學(xué)家McKendrick構(gòu)造了著名的SIR“倉(cāng)室”模型以來(lái),數(shù)學(xué)模型成為研究疾病傳播規(guī)律、評(píng)估感染風(fēng)險(xiǎn)、優(yōu)化控制策略的重要工具.早期,研究人員主要研究與空間無(wú)關(guān)的常微分系統(tǒng),僅反應(yīng)隨時(shí)間推移的動(dòng)力學(xué)特征.為了更加真實(shí)地描述現(xiàn)實(shí),研究人員發(fā)現(xiàn)空間擴(kuò)散是影響疾病傳播的重要因素.為此許多學(xué)者建立了一系列偏微分方程模型分析傳染病的動(dòng)力學(xué)性態(tài).近年來(lái),隨著研究的更加深入,研究人員逐漸意識(shí)到空間擴(kuò)散和環(huán)境異質(zhì)性在一些傳染病傳播過(guò)程中產(chǎn)生了重要影響,例如:流感、瘧疾、西尼羅河病毒等.除此之外,周期性、對(duì)流、媒體報(bào)道和有限醫(yī)療資源配置等在傳染病傳播中的作用也引起了廣泛關(guān)注.這篇博士論文主要圍繞空間異質(zhì)性、周期性、對(duì)流、非線性恢復(fù)率以及非線性發(fā)生率對(duì)于SIS傳染病模型蔓延和消退的影響展開的.本文的主要研究工作組織如下.第一章介紹本文研究主題的一些背景知識(shí)和已經(jīng)取得的最新進(jìn)展.第二章主要研究異質(zhì)環(huán)境中的一類具自由邊界和對(duì)流項(xiàng)影響的傳染病模型.首先利用拋物方程初邊值問(wèn)題的Lp理論、Zorn引理、壓縮映像原理得到全局解的存在唯一性和正性性.接著給出反應(yīng)擴(kuò)散系統(tǒng)的基本再生數(shù)及其性質(zhì),引進(jìn)自由邊界問(wèn)題風(fēng)險(xiǎn)指標(biāo)R0F(t)的定義和討論了其解析性質(zhì).借助于風(fēng)險(xiǎn)指標(biāo)RF(t),通過(guò)構(gòu)造精細(xì)上解、下解得到了疾病蔓延和消退的二擇一定理,給出了蔓延和消退的判據(jù).并且用半波方法得到了當(dāng)疾病蔓延時(shí)受對(duì)流影響的漸近擴(kuò)張速度.數(shù)值模擬給出了對(duì)流強(qiáng)度和擴(kuò)張能力對(duì)于染病區(qū)域邊沿的影響.這些結(jié)果與固定區(qū)域上傳染病模型的動(dòng)力學(xué)性質(zhì)完全不同.第三章深入探討了周期異質(zhì)環(huán)境下具自由邊界的傳染病模型.首先引入基本再生數(shù),并且給出了兩種特殊情形下顯式表達(dá)式.再借助譜半徑的方法給出自由邊界問(wèn)題的風(fēng)險(xiǎn)指標(biāo)R0F(τ),該指標(biāo)與相應(yīng)的周期拋物特征問(wèn)題的主特征值密切相關(guān).利用最大模原理、上下解方法、譜分析以及偏微分方程其它多種技巧證明了疾病蔓延和消退的充分條件.當(dāng)疾病蔓延發(fā)生時(shí),估計(jì)了受對(duì)流影響的左右不同的漸近擴(kuò)張速度.最后利用數(shù)值模擬給出對(duì)流強(qiáng)度、擴(kuò)散率和擴(kuò)張能力對(duì)疾病傳播機(jī)理的影響.第四章提出一個(gè)異質(zhì)環(huán)境中具媒體報(bào)道影響的SIS傳染病反應(yīng)擴(kuò)散模型.在該模型中,我們用媒體報(bào)道影響的因子體現(xiàn)疾病的非線性接觸率.首先利用變分法給出異質(zhì)環(huán)境中具媒體報(bào)道和擴(kuò)散影響的基本再生數(shù)的定義及其解析性質(zhì).接著給出無(wú)病平衡點(diǎn)和染病平衡點(diǎn)的存在性,再利用上下解方法、單調(diào)迭代序列、經(jīng)典的半群理論和強(qiáng)極值原理證明了當(dāng)R0D1時(shí),無(wú)病平衡點(diǎn)全局漸近穩(wěn)定;而當(dāng)R0D1時(shí),證明了當(dāng)ds=dI時(shí)染病平衡點(diǎn)的全局漸近穩(wěn)定性.數(shù)值模擬表明如果增加媒體報(bào)道強(qiáng)度,疾病的感染風(fēng)險(xiǎn)會(huì)降低,從而傳染病能夠得以快速有效地控制.第五章考慮了空間異質(zhì)環(huán)境中一類受有限醫(yī)療資源配置影響的具非線性恢復(fù)率的SIS傳染病模型.探討了環(huán)境異質(zhì)性、有限醫(yī)療資源配置等對(duì)于疾病蔓延和消退的影響.首先利用變分方法給出與最大、最小恢復(fù)率有關(guān)的閾值R0*和R0*及其性質(zhì).借助于這兩個(gè)閾值,以及上下解方法、單調(diào)迭代動(dòng)力學(xué)、乘乘減積技巧等證明了無(wú)病平衡點(diǎn)和染病平衡點(diǎn)的存在性、唯一性和穩(wěn)定性.數(shù)值模擬表明適當(dāng)?shù)牟〈矓?shù)的配置對(duì)于疾病的控制是非常關(guān)鍵的.我們的理論結(jié)果對(duì)于公共衛(wèi)生管理部門優(yōu)化有限醫(yī)療資源的配置提供了理論依據(jù).第六章中,我們總結(jié)了本文的主要工作,并且在此基礎(chǔ)上對(duì)今后的研究工作作了進(jìn)一步的規(guī)劃.
[Abstract]:Infectious diseases have been accompanied by the development of human society. In history, the continuous outbreak and spread of infectious diseases have brought great disasters to human beings. Although today's social science and technology continue to develop and medical conditions have been greatly improved, the WHO (WHO) claims that infectious diseases are still the greatest threat to human health. It is necessary to understand the distribution of the disease, the law of space-time transmission and the appropriate control strategy. Since the 1927 American mathematician Kermack and the Scotland medical scientist, the epidemiologist McKendrick constructed the famous SIR "warehouse room" model, the mathematical model has become a study of the law of disease transmission, the assessment of the risk of infection, and the optimization of the control strategy. In the early stage, the researchers mainly studied the space independent ordinary differential system, which only responded to the dynamic characteristics of the time lapse. In order to describe the reality more truly, the researchers found that space diffusion was an important factor affecting the spread of disease. In recent years, with the further research, researchers have gradually realized that space diffusion and environmental heterogeneity have played an important role in the transmission of some infectious diseases, such as influenza, malaria, West Nile virus and so on. In addition, periodicity, convection, media coverage, and the allocation of limited medical resources in the transmission of infectious diseases This thesis mainly focuses on the effects of spatial heterogeneity, periodic, convection, nonlinear recovery and nonlinear incidence on the spread and decline of SIS infectious disease model. The main research work of this paper is as follows. In the second chapter, the second chapter mainly studies an infectious disease model with free boundary and convective effects in the heterogeneous environment. First, the existence and uniqueness and the positive nature of the global solution are obtained by using the Lp theory of the initial boundary value problem of the parabolic equation, the Zorn lemma and the compression mapping principle. It introduces the definition and the analytic properties of the risk index R0F (T) of the free boundary problem. By means of the risk index RF (T), by constructing the fine upper solution and the lower solution, the two alternative theorem of the spread and decline of the disease is obtained, and the criterion of the spread and regression is given. Near expansion speed. The numerical simulation gives the effect of convection intensity and expansion ability on the edge of the infected region. These results are completely different from the kinetic properties of the fixed area. The third chapter discusses the infectious disease model with free boundary in the periodic heterogeneous environment. First, the basic regeneration number is introduced, and two is given. An explicit expression under special circumstances. The risk index R0F (tau) of the free boundary problem is given by means of the aid spectrum radius. The index is closely related to the principal eigenvalues of the corresponding periodic parabolic problem. The maximum modulus principle, the upper and lower solutions, the spectral analysis and the other techniques of the partial differential equation prove the spread and decline of the disease. In the fourth chapter, a diffusion model of SIS infectious disease with the influence of media coverage in a heterogeneous environment is proposed. In the model, we use the factor of media coverage to reflect the nonlinear contact rate of the disease. First, we use the variational method to give the definition and the analytic properties of the basic regeneration number with media coverage and diffusion in the heterogeneous environment. Then we give the existence of the disease-free equilibrium point and the equilibrium point of the disease, and then use the upper and lower solutions and the monotone iterative sequence. The classical semigroup theory and the strong extremum principle prove that the disease free equilibrium point is globally asymptotically stable when R0D1, and when R0D1, the global asymptotic stability of the equilibrium point of the disease is proved. The numerical simulation shows that the risk of infection of the disease will be reduced if the media coverage is increased, thus the infectious disease can be controlled quickly and effectively. In the fifth chapter, the SIS infectious disease model, which is affected by the allocation of limited medical resources in the spatial heterogeneity environment, is considered. The effects of environmental heterogeneity and the allocation of limited medical resources on the spread and regression of the disease are discussed. First, the threshold R0* and R0* related to the maximum and minimum recovery rate are given by the variational method. By means of these two thresholds, as well as the method of the upper and lower solutions, the monotone iterative dynamics, the multiplication and multiplication technique, the existence, uniqueness and stability of the disease free equilibrium point and the equilibrium point of the disease are proved. The numerical simulation shows that the allocation of the appropriate number of beds is not essential for the control of the disease. Our theoretical results are for public health. The management department provides a theoretical basis for the optimization of the allocation of limited medical resources. In the sixth chapter, we have summarized the main work of this paper, and on this basis, we made further plans for the future research work.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王達(dá),張丹松;與年齡相關(guān)具有空間結(jié)構(gòu)的非線性傳染病模型的周期解[J];吉林化工學(xué)院學(xué)報(bào);1997年02期

2 李建民,白天帥;考慮出生與死亡因素的傳染病模型[J];平頂山師專學(xué)報(bào);2000年02期

3 竇家維;一類具有擴(kuò)散的SI傳染病模型[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期

4 高淑京;具有常數(shù)脈沖免疫SI傳染病模型的穩(wěn)定性[J];廣州大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期

5 李建全,楊友社;一類帶有確定隔離期的傳染病模型的穩(wěn)定性分析[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年03期

6 岳錫亭,潘家齊;人口有增長(zhǎng)傳染病模型的定性分析[J];長(zhǎng)春工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年03期

7 朱慶國(guó);關(guān)于一類傳染病模型的空間周期解及混沌[J];工程數(shù)學(xué)學(xué)報(bào);2005年06期

8 李穎路;雷磊;馬潤(rùn)年;;一類離散的傳染病模型分析[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期

9 傅朝金;黃振華;;時(shí)滯傳染病模型的指數(shù)穩(wěn)定性[J];生物數(shù)學(xué)學(xué)報(bào);2007年02期

10 張群英;張來(lái);朱石花;;一類具擴(kuò)散的兩種群相互作用的傳染病模型[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期

相關(guān)會(huì)議論文 前2條

1 陳軍杰;朱靜芬;;依賴于總?cè)巳簲?shù)接觸率的SEI傳染病模型的穩(wěn)定性[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)研究進(jìn)展——2002(9)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第9屆學(xué)術(shù)研討會(huì)論文集[C];2002年

2 陳方方;曹保鋒;洪靈;;一類具有時(shí)滯及非線性飽和特性發(fā)生率的SIRS傳染病模型的穩(wěn)定性與Hopf分岔分析[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年

相關(guān)重要報(bào)紙文章 前1條

1 本報(bào)駐加拿大記者 杜華斌;數(shù)學(xué)模型:防疫決策的“特別助理”[N];科技日?qǐng)?bào);2009年

相關(guān)博士學(xué)位論文 前10條

1 鐘曉靜;隨機(jī)生物系統(tǒng)的動(dòng)力學(xué)研究[D];華南理工大學(xué);2015年

2 覃文杰;有限資源下非光滑生物系統(tǒng)理論與應(yīng)用研究[D];陜西師范大學(xué);2015年

3 孫新國(guó);具時(shí)滯和免疫反應(yīng)的傳染病模型動(dòng)力學(xué)性質(zhì)研究[D];哈爾濱工業(yè)大學(xué);2015年

4 郭英佳;若干生物學(xué)和傳染病學(xué)模型的動(dòng)力學(xué)研究[D];吉林大學(xué);2015年

5 張向華;幾類帶Lévy跳的隨機(jī)傳染病模型的動(dòng)力學(xué)性質(zhì)分析[D];哈爾濱工業(yè)大學(xué);2014年

6 王喜英;具有切換參數(shù)和脈沖控制的HIV傳染病模型的動(dòng)力學(xué)研究[D];西北工業(yè)大學(xué);2015年

7 樊小琳;種群、傳染病及復(fù)雜網(wǎng)絡(luò)微分方程模型動(dòng)力學(xué)行為研究[D];新疆大學(xué);2016年

8 龐彥尼;隨機(jī)SIQS傳染病模型的動(dòng)力學(xué)研究[D];吉林大學(xué);2015年

9 葛靜;空間異質(zhì)環(huán)境中SIS傳染病模型若干問(wèn)題研究[D];揚(yáng)州大學(xué);2017年

10 林玉國(guó);白噪聲擾動(dòng)下的隨機(jī)傳染病模型動(dòng)力學(xué)行為[D];東北師范大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 張巍巍;具有人口遷移和入境檢測(cè)隔離措施的傳染病模型分析[D];哈爾濱工業(yè)大學(xué);2010年

2 代洪祥;一類具有隔離項(xiàng)的隨機(jī)SIQS傳染病模型全局正解的漸近行為[D];暨南大學(xué);2015年

3 肖延舉;一類具有標(biāo)準(zhǔn)發(fā)生率與飽和治療函數(shù)的SIRS傳染病模型的穩(wěn)定性和Bogdanov-Takens分支[D];東北師范大學(xué);2015年

4 劉洋;隨機(jī)變?nèi)丝赟ISV傳染病模型的動(dòng)力學(xué)行為[D];東北師范大學(xué);2015年

5 楊秋野;具有潛伏期的傳染病的預(yù)防接種策略[D];渤海大學(xué);2015年

6 高連英;三類具有非線性傳染率的傳染病模型的研究[D];渤海大學(xué);2015年

7 吉學(xué)盛;幾類傳染病模型的研究[D];集美大學(xué);2015年

8 劉爽;隨機(jī)多群體SIS傳染病模型的動(dòng)力學(xué)行為[D];東北師范大學(xué);2015年

9 牛秀欽;順序數(shù)據(jù)同化方法在傳染病模型模擬預(yù)測(cè)中的應(yīng)用[D];蘭州大學(xué);2015年

10 李文娟;一類離散SIRS傳染病模型的穩(wěn)定性分析[D];山西大學(xué);2015年



本文編號(hào):2154089

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2154089.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d56ef***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产精品午夜小视频观看| 亚洲av一区二区三区精品| 老司机亚洲精品一区二区| 亚洲精品欧美精品日韩精品| 一区二区三区日本高清| 老鸭窝精彩从这里蔓延| 最近的中文字幕一区二区| 日韩人妻一区二区欧美| 欧美成人免费夜夜黄啪啪| 熟妇久久人妻中文字幕| 国产精品亚洲二区三区| 开心久久综合激情五月天| 日韩视频在线观看成人| 欧美做爰猛烈叫床大尺度| 日韩精品一区二区三区射精| 免费特黄欧美亚洲黄片| 丁香六月啪啪激情综合区| 国产一级二级三级观看| 操白丝女孩在线观看免费高清| 麻豆国产精品一区二区三区| 在线免费不卡亚洲国产| 色涩一区二区三区四区| 日韩中文字幕欧美亚洲| 日韩精品视频香蕉视频| 在线免费观看黄色美女| 国产又粗又硬又长又爽的剧情| 国产精品欧美一级免费| 五月天婷亚洲天婷综合网| 欧美日韩精品综合在线| 偷拍偷窥女厕一区二区视频| 欧美亚洲另类久久久精品| 久久精视频免费视频观看| 91精品视频全国免费| 成年男女午夜久久久精品 | 国产亚洲精品久久久优势| 亚洲一区二区三区日韩91| 日韩精品人妻少妇一区二区| 久久精品久久精品中文字幕| 欧美国产亚洲一区二区三区| 欧美区一区二区在线观看| 国内胖女人做爰视频有没有|