毒素影響下具有階段結(jié)構(gòu)的種群動力學(xué)行為研究
[Abstract]:As we all know, the rapid development of science and technology has not only improved the economic development but also improved the standard of human life, but the environmental problems have become serious. Especially with the rapid development of industrial production, the pollution of the environment is further aggravated. If no timely and effective measures are taken, the living environment of the biological population will be seriously affected. Population ecology plays an important role in guiding people's daily production practice as well as practical significance. Especially with the deterioration of the environment, many people's research on the survival of the population in the polluted environment has been a hot issue. However, it is unreasonable for many population models to consider the population growth process as a whole. On the one hand, the difference of physiological function in each stage of the population is obvious; on the other hand, the different stages of the population affect each other in survival. The above two aspects have an important effect on the survival of the population. Therefore, it is necessary to consider the existence of physiological stage in the study of population model. Therefore, for the study of population survival under environmental pollution, we need to establish a reasonable biological mathematical model and qualitatively analyze the population model to predict the population development and change under environmental pollution. In this way, not only can the corresponding environmental protection measures be formulated to make the population survive sustainably, but also it is of great significance to maintain the rich diversity of the ecological population. The main content structure of the thesis has the following parts: the first chapter: preparatory knowledge. In chapter 2, a two-stage biological population model is considered, in which both adult and juvenile populations are affected by toxins. With the help of the theory of ordinary differential equation, it is proved that the solution of population model is bounded, and the stability of positive equilibrium point and origin point is proved. Then, the conditions of population survival and extinction are given, and it is proved that the population model has periodic solution and is stable. Finally, Matlab numerical simulation is used to prove the relevant conclusions. In chapter 3, the two-stage population model of single population with interspecific interaction is considered, and they are simultaneously affected by toxins. The boundedness of positive solution, the existence and stability of equilibrium point are proved, and the conditions for population extinction and survival are obtained. At the same time, we consider the results of periodic solutions. The conclusion of this chapter is verified by numerical simulation. In chapter 4, the predator-prey mathematical model under the influence of toxin is considered. The boundedness of the system solution and the condition of the persistence of the system are obtained. The existence and stability of the periodic solution of the system are given, and the relevant conclusions are further proved by numerical simulation. Chapter 5: considering that the population model has stages and self-feeding (prey population has stage and self-feeding) under the action of toxin, the problem of persistent survival of predator-prey model and the results of periodic solution are discussed. Finally, the relevant conclusions in this chapter are further proved by numerical simulation. Finally, the paper is summarized and the future direction of further discussion is put forward; thanks; references, etc.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O175
【相似文獻】
相關(guān)期刊論文 前10條
1 霍海峰;蘇克所;孟新友;;一類具有階段結(jié)構(gòu)的非自治互惠系統(tǒng)的持續(xù)性與周期解[J];蘭州理工大學(xué)學(xué)報;2010年05期
2 李華剛;錢靖;;一類帶有階段結(jié)構(gòu)和時滯的Beddington-DeAngelis型食餌模型周期解的存在性[J];湖北師范學(xué)院學(xué)報(自然科學(xué)版);2011年03期
3 劉竹梅;階段結(jié)構(gòu)競爭生態(tài)數(shù)學(xué)模型的動力學(xué)行為[J];寶雞文理學(xué)院學(xué)報(自然科學(xué)版);2001年01期
4 肖氏武,王穩(wěn)地;一類具階段結(jié)構(gòu)的捕食者-食餌模型的周期解[J];西南師范大學(xué)學(xué)報(自然科學(xué)版);2003年06期
5 凌征球;具階段結(jié)構(gòu)和擴散的單種群增長模型及其最優(yōu)收獲[J];廣西民族學(xué)院學(xué)報(自然科學(xué)版);2005年01期
6 吳新民;;一個具有階段結(jié)構(gòu)單種群系統(tǒng)的周期解[J];湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版);2006年04期
7 肖氏武;王穩(wěn)地;金瑜;;一類具階段結(jié)構(gòu)的捕食者-食餌模型的漸進性質(zhì)(英文)[J];生物數(shù)學(xué)學(xué)報;2007年01期
8 楊金根;周學(xué)勇;師向云;;一類具有階段結(jié)構(gòu)和時滯的捕食者-食餌模型分析(英文)[J];信陽師范學(xué)院學(xué)報(自然科學(xué)版);2009年03期
9 徐佳佳;何澤榮;張向波;;具有年齡和階段結(jié)構(gòu)離散模型動力學(xué)行為分析[J];杭州電子科技大學(xué)學(xué)報;2011年02期
10 李延平,鄭唯唯;脆弱斑塊生境階段結(jié)構(gòu)種群的擴散效應(yīng)[J];紡織高;A(chǔ)科學(xué)學(xué)報;2002年02期
相關(guān)博士學(xué)位論文 前1條
1 石瑞青;階段結(jié)構(gòu)和脈沖效應(yīng)在種群模型中的應(yīng)用[D];大連理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 來文寶;一類具有階段結(jié)構(gòu)肺結(jié)核模型的定性分析[D];華中師范大學(xué);2015年
2 范學(xué)良;毒素影響下具有階段結(jié)構(gòu)的種群動力學(xué)行為研究[D];蘭州交通大學(xué);2015年
3 謝溪莊;具有非線性種內(nèi)制約關(guān)系和階段結(jié)構(gòu)的競爭系統(tǒng)研究[D];廈門大學(xué);2008年
4 劉國花;具階段結(jié)構(gòu)兩種群動力學(xué)模型研究[D];蘭州交通大學(xué);2010年
5 郭亮;自治和三類具階段結(jié)構(gòu)生態(tài)模型定性研究[D];東北大學(xué);2008年
6 李盈科;具有階段結(jié)構(gòu)的種群動力學(xué)行為研究[D];新疆大學(xué);2010年
7 丁紅;斑塊環(huán)境下具有階段結(jié)構(gòu)的捕食—食餌系統(tǒng)的穩(wěn)定性[D];蘭州理工大學(xué);2009年
8 劉丙辰;階段結(jié)構(gòu)捕食競爭時滯模型分析[D];廣西師范大學(xué);2002年
9 陳寧;幾類帶階段結(jié)構(gòu)時滯生物模型解的定性研究[D];安徽大學(xué);2014年
10 丁亮;一類具有變化參數(shù)α(t)的分階段結(jié)構(gòu)的生態(tài)系統(tǒng)的多周期解[D];昆明理工大學(xué);2013年
,本文編號:2152058
本文鏈接:http://sikaile.net/kejilunwen/yysx/2152058.html