幾類微分方程的同宿和異宿軌道的研究
[Abstract]:In this paper, we use the variational method to study the homoclinic orbits of the first order Hamilton system and several classes of two order damped differential equations. Under various hypothetical conditions, the existence and multiple solutions of the homoclinic orbits are obtained respectively. The main contents are as follows: the first chapter introduces some research background, research situation and some of them. In the second chapter, the second chapter considers the following first order Hamilton system z=JHz (T, z) and a.e.t R, where H (T, z) depends on T, but t is not periodic. Under the hypothetical super two assumption that is weaker than the famous (Ambrosetti-Rabinowitz) two times condition, the existence of the homoclinic orbit is obtained by the surround theorem. In addition, the existence of the homoclinic orbit is obtained. We discuss the multiple solvability of homoclinic orbits under the two times. Improve and extend the existing results in some literature. The third chapter discusses the following differential equation u +cu-L (T) u+Wu_ (T, U) =0 with damping, where C > 0 is a constant; the symmetric matrix L (T) is non periodic on T; W (T,) is not periodic. In the case of two or two times, the existence of infinitely many homoclinic orbitals and quasi homoclinic orbitals of the equation is obtained by using the critical point theory. Some results in the existing literature are improved, and a clear answer to the open problem proposed by Zhang and Yuan is given. Furthermore, the use of the Nehari manifold is also considered when the W (T, U) indefinite number is considered. The existence of the homoclinic orbits of the equation. The fourth chapter discusses the following differential equations with damped +g (T) u-L (T) u+Wu_ (T, U) =0, wherein the G C (R, R); the symmetric matrix is not periodic; The fountain theorem discusses the existence of infinitely many homoclinic orbits when W (T, U) is super two, two times and concave convex combination terms, and improves and generalizes some results in the existing literature. The fifth chapter considers the homoclinic orbits of the following equation, the problem of u +Au-L (T) u+Wu_ (t, U) =f (T) of the following equation, and A is an inverse. A symmetric constant matrix; L (T) C (R, RN2) is a symmetric and consistent positive definite matrix; the function f L2 (R, RN) and w C1 C1 (R x), first, consider the existence and multi solvability of the homoclinic orbits of strongly indefinite problems. The existence of the heteroclinic orbit is obtained by the variational method. That is, there is a heteroclinic orbit w for a subset of M (?) RN and (?) x m, which makes w (- infinity) =x and w (+ infinity) m{x}. m{x}.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O175
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱德明,覃思義;伴隨奇點(diǎn)分支的退化異宿軌道的保存和橫截性[J];系統(tǒng)科學(xué)與數(shù)學(xué);1999年02期
2 曾唯堯,羅交晚;指數(shù)二分性與奇異攝動(dòng)系統(tǒng)的橫戳異宿軌道[J];數(shù)學(xué)年刊A輯(中文版);1999年04期
3 徐英祥,尹麗,黃明游;一類含有參數(shù)和有理奇性哈密頓系統(tǒng)的同宿與異宿軌道[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);2004年02期
4 曾唯堯,井竹君;指數(shù)二分性與退化情形下的異宿分支[J];中國(guó)科學(xué)(A輯 數(shù)學(xué) 物理學(xué) 天文學(xué) 技術(shù)科學(xué));1995年03期
5 陳建軍;禹思敏;;一個(gè)分段Sprott系統(tǒng)及其混沌機(jī)理分析[J];物理學(xué)報(bào);2009年11期
6 陳建軍;禹思敏;;光滑Chua系統(tǒng)異宿軌道存在性的證明[J];工程數(shù)學(xué)學(xué)報(bào);2011年05期
7 李風(fēng)泉;一類奇異二階Hamilton系統(tǒng)的異宿軌道[J];曲阜師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年02期
8 魏許青,曾唯堯;指數(shù)型二分性,,Melnikov函數(shù)和異宿軌道[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);1996年03期
9 張偉,霍拳忠,李驪;非線性振動(dòng)系統(tǒng)的異宿軌道分叉、次諧分叉和混沌[J];應(yīng)用數(shù)學(xué)和力學(xué);1992年03期
10 曾唯堯,井竹君;Melnikov向量與退化情形下的橫截異宿軌道[J];數(shù)學(xué)學(xué)報(bào);1997年02期
相關(guān)會(huì)議論文 前3條
1 蔡萍;李震波;唐駕時(shí);;(2+1)維改進(jìn)的KP方程的同異宿解分析[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
2 馮晶晶;張琪昌;王煒;;用改進(jìn)的Pade法計(jì)算一類具有偶次非線性項(xiàng)的自治振動(dòng)方程的解析同宿及異宿軌道[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
3 馮晶晶;張琪昌;王煒;;二維非線性振動(dòng)系統(tǒng)同異宿軌道的類Pade逼近方法[A];第十三屆全國(guó)非線性振動(dòng)暨第十屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集[C];2011年
相關(guān)碩士學(xué)位論文 前1條
1 趙雪;伴隨鞍結(jié)點(diǎn)分支的異宿軌道分支[D];山東師范大學(xué);2016年
本文編號(hào):2139074
本文鏈接:http://sikaile.net/kejilunwen/yysx/2139074.html