廣義H-矩陣一些新的判定
[Abstract]:H-matrix is widely used in economics, statistics, engineering technology and so on. As a generalized form of H-matrix under positive definite condition, the numerical solution of 2-D or 3-D Euler equation in hydrodynamic calculation of generalized H-matrix is obtained. The neutralization of the invariant torus of the dynamical system and the matrix analysis have important theoretical and practical significance. In this paper, we apply the relation between generalized eigenvalue and generalized Rayleigh quotient, and the relation between generalized M- matrix and M- matrix, combining with the corresponding matrix block and the estimation of spectral radius of submatrix, etc. Some judgment theorems of generalized H-matrix are obtained, and some recent results are improved. The first chapter mainly introduces the theoretical background, application background and research status of generalized H-matrix, and gives the symbol description, definition, Lemma and so on. In chapter 2, the relation between generalized M- matrix and M- matrix, the spectral radius of submatrix, the relationship between generalized eigenvalue and generalized Rayleigh quotient, and the techniques of matrix partitioning and inequality scaling are used. Some simple judgment theorems of generalized H-matrix are obtained, and corresponding numerical examples are given to illustrate the validity of the decision. In chapter 3, on the basis of the second chapter, we select the positive diagonal matrix D in a progressive way so that AD is a diagonally dominant matrix strictly in partial order, and give some progressive judgment methods of generalized H-matrix. These methods provide a theoretical basis for some generalized H-matrix iterative discriminant algorithms proposed in Chapter 4. In chapter 4, on the basis of the theory in chapter 3, the corresponding iterative matrix is constructed, and some iterative discriminant algorithms of generalized H-matrix are given, and the convergence of each algorithm is proved theoretically. Finally, we use appropriate numerical examples to illustrate the effectiveness of the algorithm.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O151.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔靜靜;陸全;徐仲;安曉虹;;廣義H-矩陣的一組判定條件[J];應(yīng)用數(shù)學(xué);2016年02期
2 劉建州;呂振華;李林;楚珊;;一組非奇異H-矩陣的實(shí)用判據(jù)[J];湖南文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2015年02期
3 郭愛(ài)麗;劉建州;;廣義Nekrasov矩陣的充分條件[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2013年03期
4 王潔;劉建州;黃澤軍;;非奇異H矩陣的一類(lèi)新遞進(jìn)判別法[J];工程數(shù)學(xué)學(xué)報(bào);2012年03期
5 郭愛(ài)麗;劉建州;;廣義Nekrasov矩陣的判定[J];工程數(shù)學(xué)學(xué)報(bào);2009年04期
6 朱礫;卿科;;廣義H-矩陣的乘積的性質(zhì)[J];高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào);2009年01期
7 黃澤軍;劉建州;;非奇異H矩陣的一類(lèi)新迭代判別法[J];工程數(shù)學(xué)學(xué)報(bào);2008年05期
8 朱礫;劉建州;;Some new conditions for generalized H-matrices[J];Applied Mathematics and Mechanics(English Edition);2007年11期
9 徐映紅,劉建州;廣義嚴(yán)格對(duì)角占優(yōu)矩陣的一組判定條件[J];工程數(shù)學(xué)學(xué)報(bào);2005年04期
10 劉建州,徐映紅,廖安平;廣義塊對(duì)角占優(yōu)矩陣的判定[J];高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào);2005年03期
相關(guān)博士學(xué)位論文 前2條
1 申淑謙;特殊矩陣數(shù)值分析和鞍點(diǎn)問(wèn)題迭代求解預(yù)處理技術(shù)[D];電子科技大學(xué);2008年
2 朱礫;塊對(duì)角占優(yōu)矩陣的性質(zhì)與判定及其應(yīng)用[D];湘潭大學(xué);2007年
相關(guān)碩士學(xué)位論文 前2條
1 匡巧英;H-矩陣和廣義H-矩陣的一些判別方法[D];湘潭大學(xué);2013年
2 冉水秀;塊H-矩陣與廣義H-矩陣性質(zhì)的研究[D];湘潭大學(xué);2012年
,本文編號(hào):2123599
本文鏈接:http://sikaile.net/kejilunwen/yysx/2123599.html