雙有限liminf domain范疇的笛卡爾閉性
本文選題:模糊序 + liminf完備的模糊偏序集 ; 參考:《模糊系統(tǒng)與數(shù)學(xué)》2017年03期
【摘要】:基于模糊偏序集的liminf連續(xù)性,引入了雙有限liminf domain的概念。這可看作是雙有限domain在模糊偏序集框架下的推廣。在真值格為frame的情形下,證明了雙有限liminf domain范疇是笛卡爾閉的。
[Abstract]:Based on the liminf continuity of fuzzy partial ordered sets, the concept of double finite liminf domain is introduced. This can be seen as a generalization of double finite domain in the framework of fuzzy partial ordered sets. In the case that the truth lattice is frame, it is proved that the bifinite liminf domain category is Cartesian closed.
【作者單位】: 長(zhǎng)安大學(xué)理學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(11501048;11426044)
【分類號(hào)】:O153.1;O159
【參考文獻(xiàn)】
相關(guān)博士學(xué)位論文 前1條
1 賴洪亮;Ω-范疇序結(jié)構(gòu)性質(zhì)的研究[D];四川大學(xué);2007年
【共引文獻(xiàn)】
相關(guān)博士學(xué)位論文 前3條
1 蘇淑華;Ω-范疇在量化Domain理論中的應(yīng)用研究[D];湖南大學(xué);2014年
2 劉敏;Ω-范疇與模糊Domain中相關(guān)問題的研究[D];陜西師范大學(xué);2013年
3 汪開云;模糊Domain與模糊Quantale中若干問題的研究[D];陜西師范大學(xué);2012年
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張昆龍,孫一康,蔣慎言;偏序集上的蘊(yùn)涵[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年04期
2 徐飛;廣義Z-擬連續(xù)偏序集的若干性質(zhì)[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年04期
3 李伯權(quán);;廣義Z-連續(xù)偏序集的幾個(gè)拓?fù)渥⒂?英文)[J];安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
4 張春波;徐曉泉;;Z-半連續(xù)偏序集的性質(zhì)[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期
5 張春波;徐曉泉;;Z-連續(xù)偏序集的映射性質(zhì)[J];江西科學(xué);2008年03期
6 龔雅玲;;試論幾類弱連續(xù)偏序集的關(guān)系[J];南昌教育學(xué)院學(xué)報(bào);2010年05期
7 龔雅玲;涂繼,
本文編號(hào):2076503
本文鏈接:http://sikaile.net/kejilunwen/yysx/2076503.html