天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于貝葉斯機器學(xué)習(xí)的生態(tài)模型參數(shù)優(yōu)化方法研究

發(fā)布時間:2018-06-20 23:28

  本文選題:NUTS + 生態(tài)模型; 參考:《地球信息科學(xué)學(xué)報》2017年10期


【摘要】:參數(shù)優(yōu)化方法是準確估計生態(tài)模型參數(shù)、降低其不確定性的有效手段。本文提出一種基于貝葉斯機器學(xué)習(xí)的No-U-Turn Sampler(NUTS)生態(tài)模型參數(shù)優(yōu)化方法。NUTS是一種高效的參數(shù)優(yōu)化方法,每次取樣中利用遞歸算法生成候選參數(shù)集(二叉樹)推斷參數(shù)的后驗信息,如果滿足約束條件"非U型回轉(zhuǎn)",不斷構(gòu)建子樹更新參數(shù);否則,記錄本次抽樣的"最優(yōu)"參數(shù)集,并開始下一次取樣,直到獲取足夠樣本。該算法在每次取樣中充分優(yōu)化參數(shù),避免因隨機游走行為產(chǎn)生冗余抽樣,提高了參數(shù)優(yōu)化效率。本文以千煙洲亞熱帶人工針葉林碳通量模擬為例,基于Pymc3框架利用NUTS參數(shù)優(yōu)化方法實現(xiàn)了碳通量(Net Ecosystem Exchange,NEE)模型參數(shù)反演,并與Metropolis-Hastings(MH)方法進行對比。結(jié)果表明,本文算法的參數(shù)值達到穩(wěn)定波動時的抽樣次數(shù)減少了85%左右,參數(shù)優(yōu)化效率提升3倍左右。參數(shù)優(yōu)化后,2種NEE模型中7個參數(shù)不確定性降低10%~53%。此外,NEE模擬效果明顯提升,模擬值與實測值的R2分別提高23%和17%,RMSE分別降低3%和4%。綜上所述,本文提出的參數(shù)優(yōu)化方法對生態(tài)領(lǐng)域的參數(shù)估計或數(shù)據(jù)同化工作具有一定的借鑒意義。
[Abstract]:Parameter optimization method is an effective method to estimate the parameters of ecological model accurately and reduce its uncertainty. In this paper, a No-U-Turn Samplern NUTS-based ecological model parameter optimization method based on Bayesian machine learning. NUTS is an efficient parameter optimization method. The recursive algorithm is used to generate the posterior information of the candidate parameter set (binary tree) in every sampling. If the constraint "non-U rotation" is satisfied, subtree update parameters are constantly constructed; otherwise, the "optimal" parameter set of this sampling is recorded and the next sampling begins until sufficient samples are obtained. The algorithm optimizes parameters in every sampling, avoids redundant sampling due to random walk behavior, and improves the efficiency of parameter optimization. In this paper, the numerical simulation of carbon flux of artificial coniferous forest in Qianyanzhou subtropics is taken as an example. Based on Pymc3 framework, the parameter inversion of net Ecosystem Exchange nee) model is realized by using Nuts parameter optimization method, and compared with Metropolis-HastingsMH method. The results show that the sampling times of the algorithm are reduced by about 85% and the efficiency of parameter optimization is increased by about 3 times when the parameters of the algorithm reach stable fluctuation. After parameter optimization, the uncertainty of 7 parameters in the two kinds of NEE models is reduced by 10% and 53%. In addition, the simulation effect of nee was significantly improved, the R2 of simulated value and measured value were increased by 23% and 17%, respectively, and RMSE decreased by 3% and 4%, respectively. To sum up, the parameter optimization method proposed in this paper can be used for reference in the field of ecological parameter estimation or data assimilation.
【作者單位】: 沈陽農(nóng)業(yè)大學(xué);中國科學(xué)院地理科學(xué)與資源研究所生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測與模擬重點實驗室;中國科學(xué)院大學(xué);
【基金】:國家重點研發(fā)計劃(2016YFC0500204) 國家自然科學(xué)基金項目(31501217、41571424) 遼寧省科學(xué)技術(shù)計劃項目(2014201001)
【分類號】:O212;TP18

【相似文獻】

相關(guān)碩士學(xué)位論文 前1條

1 李紅梅;機器學(xué)習(xí)方法和統(tǒng)計建模方法的預(yù)測比較研究[D];云南師范大學(xué);2016年

,

本文編號:2046106

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2046106.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bcf2b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲午夜福利不卡片在线| 国产激情一区二区三区不卡| 91在线国内在线中文字幕| 久久国产亚洲精品成人| 东北女人的逼操的舒服吗| 国产对白老熟女正在播放| 国产欧美一区二区三区精品视| 亚洲一区二区三区三区| 国产熟女一区二区精品视频| 亚洲男人的天堂就去爱| 久久精品中文字幕人妻中文| 日本 一区二区 在线| 日本一品道在线免费观看| 亚洲天堂久久精品成人| 国内女人精品一区二区三区| 熟女乱一区二区三区四区| 久久精品亚洲情色欧美| 男女午夜视频在线观看免费| 亚洲乱妇熟女爽的高潮片| 初尝人妻少妇中文字幕在线| 少妇熟女亚洲色图av天堂| 亚洲国产91精品视频| 东京热加勒比一区二区三区 | 国产亚洲精品久久99| 亚洲精品成人福利在线| 五月情婷婷综合激情综合狠狠 | 在线观看免费午夜福利| 亚洲熟女国产熟女二区三区| 日韩av欧美中文字幕| 好骚国产99在线中文| 欧美多人疯狂性战派对| 亚洲欧美日韩国产成人| 日韩熟妇人妻一区二区三区| 国产午夜福利片在线观看| 午夜视频成人在线免费| 欧美尤物在线观看西比尔| 亚洲永久一区二区三区在线| 最新69国产精品视频| 精品日韩视频在线观看| 小草少妇视频免费看视频| 沐浴偷拍一区二区视频|