低雷諾數(shù)下不可壓縮流動(dòng)問題的三維EFG法分析
本文選題:EFG法 + N-S方程; 參考:《湘潭大學(xué)》2017年碩士論文
【摘要】:目前,流體力學(xué)中非線性偏微分方程的求解有各式各樣的數(shù)值解法;趩卧臄(shù)值方法在求解流體力學(xué)問題時(shí)均需要利用單元進(jìn)行計(jì)算區(qū)域的離散,這不便于求解和應(yīng)用。無單元Galerkin(Element-Free Galerkin,EFG)法作為一種有巨大研究及應(yīng)用價(jià)值的數(shù)值方法,其采用的是基于離散點(diǎn)的近似,不需要單元信息,不僅便于處理復(fù)雜邊界,而且計(jì)算準(zhǔn)確,因此不少學(xué)者將其應(yīng)用于流體力學(xué)問題的求解。近年來EFG法在流體力學(xué)領(lǐng)域的應(yīng)用仍然處于發(fā)展階段,而且主要用于求解二維流場(chǎng)問題,但是很多實(shí)際流動(dòng)問題往往不能簡(jiǎn)化為二維流動(dòng)問題進(jìn)行分析,故本文以低雷諾數(shù)下三維不可壓縮粘性流體流動(dòng)為研究對(duì)象,以EFG法和計(jì)算流體力學(xué)為理論基礎(chǔ),編寫計(jì)算程序?qū)ζ淞鲃?dòng)進(jìn)行數(shù)值研究,全文的主要研究工作和所得結(jié)論如下:(1)推導(dǎo)出三維Stokes流動(dòng)的EFG法離散控制方程,以推導(dǎo)的離散方程和EFG法理論為依據(jù)編寫算法程序?qū)哂芯_解的三維Stokes方程進(jìn)行了求解,驗(yàn)證了所編程序和算法是有效可靠的。將其應(yīng)用于立體空腔Stokes流動(dòng)問題的求解時(shí),重點(diǎn)分析了不同速度比和高寬比對(duì)流動(dòng)的影響,數(shù)值結(jié)果表明隨著速度比S值的增加,其內(nèi)部流態(tài)由四個(gè)臨界值分成五個(gè)不同的階段;隨著高寬比A的變化,其內(nèi)部漩渦也經(jīng)歷了由一個(gè)到兩個(gè),隨后又只有一個(gè),接著發(fā)展為多個(gè)漩渦的過程。(2)考慮慣性項(xiàng)的作用,建立了三維定常Navier-Stokes(簡(jiǎn)稱N-S)方程的EFG法離散表達(dá)式,編寫程序數(shù)值研究了180°圓形截面彎管的流動(dòng)特性,重點(diǎn)探究雷諾數(shù)和曲率直徑比對(duì)其流場(chǎng)和漩渦生成的作用。結(jié)果表明,在曲率直徑比相同時(shí),入口雷諾數(shù)的取值影響著彎管內(nèi)迪恩漩渦的結(jié)構(gòu)和強(qiáng)度;在雷諾數(shù)相同時(shí),理尼漩渦在小的曲率直徑比彎管中出現(xiàn)的地方靠近彎曲段前沿,而在大的曲率直徑比彎管中則往后一些。另外,彎管內(nèi)速度和壓力的分布受曲率直徑比變化的影響更為明顯。(3)考慮到與時(shí)間有關(guān)的流動(dòng)情況,采用θ加權(quán)法進(jìn)行時(shí)間項(xiàng)的離散,完成三維非定常N-S方程的EFG法離散格式的推導(dǎo),編寫求解程序?qū)Σ⒘袌A柱在低雷諾數(shù)下的繞流展開分析。結(jié)果顯示,并列圓柱的三維流動(dòng)特性明顯,不同雷諾數(shù)下并列圓柱中的尾流形態(tài)存在差異。本文運(yùn)用EFG法對(duì)三維定常Stokes流動(dòng)、考慮慣性項(xiàng)的彎管定常流動(dòng)以及考慮時(shí)間項(xiàng)的并列圓柱非定常流動(dòng)展開了數(shù)值模擬,計(jì)算結(jié)果準(zhǔn)確反映了其三維流場(chǎng)情況,給工程應(yīng)用提供了一些有效的指導(dǎo)。
[Abstract]:At present, there are various numerical methods for solving nonlinear partial differential equations in fluid mechanics. The numerical method based on element is not easy to solve and be applied to solve the hydrodynamic problems because it needs to use the element to discretize the computational region. As a numerical method with great research and application value, the element-free Galerkini Element-Free Galerkini (EFG) method is based on discrete point approximation and does not require element information. It is not only convenient to deal with complex boundaries, but also accurate in calculation. Therefore, many scholars apply it to solving hydrodynamic problems. In recent years, the application of EFG method in the field of fluid mechanics is still in the developing stage, and it is mainly used to solve two-dimensional flow field problems. However, many practical flow problems can not be simplified to two-dimensional flow problems for analysis. Therefore, in this paper, the three-dimensional incompressible viscous fluid flow at low Reynolds number is taken as the research object, and the EFG method and computational fluid dynamics are used as the theoretical basis. The main research work and conclusions are as follows: (1) the EFG discrete governing equations of three-dimensional Stokes flow are derived. Based on the derived discrete equations and EFG theory, the three-dimensional Stokes equations with exact solutions are solved. The program and algorithm are proved to be effective and reliable. When it is applied to solve the Stokes flow problem in a solid cavity, the effect of different velocity ratio and aspect ratio on the flow is analyzed. The numerical results show that the flow rate increases with the increase of the velocity ratio. Its internal flow pattern is divided into five different stages from four critical values. With the change of aspect ratio A, the internal vortex also goes from one to two, then only one, and then develops into a number of whirlpools. The EFG discrete expression of the three-dimensional steady Navier-Stokes equation is established. The flow characteristics of 180 擄circular section bends are studied numerically. The effects of Reynolds number and curvature diameter ratio on the flow field and vortex generation are investigated. The results show that when the ratio of curvature to diameter is the same, the value of inlet Reynolds number affects the structure and strength of the Dean vortex in the bend, and when the Reynolds number is the same, the Lennis vortex is near the front of the bend section in the small curvature diameter ratio. In larger curvature diameters than in bends, a little later. In addition, the distribution of velocity and pressure in the bend is more obviously influenced by the change of curvature diameter ratio. Considering the time-related flow, theta weighted method is used to discretize the time term. The EFG discretization scheme of three-dimensional unsteady N-S equations is derived, and a program is written to analyze the flow around a parallel cylinder at low Reynolds number. The results show that the three-dimensional flow characteristics of parallel cylinders are obvious, and the wake patterns of parallel cylinders are different under different Reynolds numbers. In this paper, the EFG method is used to simulate the steady flow of three-dimensional steady Stokes flow, the steady flow of curved pipe with inertia term and the unsteady flow of parallel cylinder with time term. The calculated results accurately reflect the three-dimensional flow field. It provides some effective guidance for engineering application.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O35;O241.82
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 白麗霞;;用EFG法解拋物型偏微分方程全離散的誤差估計(jì)[J];科技情報(bào)開發(fā)與經(jīng)濟(jì);2009年14期
2 張延軍,唐紅兵;EFG法在土體固結(jié)中的應(yīng)用[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2002年01期
3 ;Green and red Anti-Stokes emission of U~(3+): LaCl_3 produced by infrared laser[J];原子與分子物理學(xué)報(bào);2001年01期
4 孫孚,高山,王偉,錢成春;Singularity and Breaking of the Third Order Stokes Waves[J];China Ocean Engineering;2003年01期
5 ;Application of Splitting Extrapolation to Stokes Equation[J];Wuhan University Journal of Natural Sciences;2003年01期
6 ;Compact difference approximation with consistent boundary condition[J];Progress in Natural Science;2003年10期
7 肖留超;陳紹春;;Stokes問題的一個(gè)非協(xié)調(diào)矩形有限元分析(英文)[J];數(shù)學(xué)季刊;2009年04期
8 周清甫;Stokes波的對(duì)稱分叉[J];力學(xué)學(xué)報(bào);1992年01期
9 何銀年,李開泰;STOKES COUPLING METHOD FOR THE EXTERIOR FLOW PART Ⅰ:APPROXIMATE ACCURACY[J];Acta Mathematicae Applicatae Sinica(English Series);1999年03期
10 肖躍龍,郭柏靈;Existence and Upper Semicontinuity of.the Attractor for a Singularly PerturbedNavier-Stokes Equation[J];數(shù)學(xué)進(jìn)展;2000年05期
相關(guān)會(huì)議論文 前10條
1 Liu Wenwen;Peng Jie;;A study of the Stokes' first problem of thixotropic fluid[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
2 唐元義;許厚澤;;大地測(cè)量邊值問題Stokes積分法與自然邊界元法的比較[A];中國(guó)地球物理·2009[C];2009年
3 許婧;傅克祥;李象遠(yuǎn);;Stokes頻移的時(shí)間相關(guān)性[A];第九屆全國(guó)化學(xué)動(dòng)力學(xué)會(huì)議論文摘要集[C];2005年
4 ;An Efficient Solver for the Stokes Equations with Random Inputs[A];Information Technology and Computer Science—Proceedings of 2012 National Conference on Information Technology and Computer Science[C];2012年
5 朱克勤;;從Stokes第一問題的精確解談起[A];力學(xué)史與方法論論文集[C];2003年
6 林啟訓(xùn);童金華;傅英;李婧;陳雪珍;陳麗華;黃晉之;;基于Stokes的枇杷葉植物飲料研究[A];福建省農(nóng)業(yè)工程學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集[C];2006年
7 朱克勤;;從Stokes第一問題的精確解談起[A];力學(xué)史與方法論論文集[C];2003年
8 李小林;祝家麟;;定常Stokes問題的無網(wǎng)格Galerkin方法[A];第五屆全國(guó)青年計(jì)算物理學(xué)術(shù)交流會(huì)論文摘要[C];2008年
9 孔瑋;;Stokes層的線性穩(wěn)定性:高波數(shù)的結(jié)果[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
10 ;Optimal Design for Geometry of Blade and Boundary Shape Control of Navier-Stokes Equations[A];計(jì)算流體力學(xué)研究進(jìn)展——第十二屆全國(guó)計(jì)算流體力學(xué)會(huì)議論文集[C];2004年
相關(guān)博士學(xué)位論文 前10條
1 闞酉潯;基于多源測(cè)量數(shù)據(jù)融合的三維實(shí)景重建技術(shù)研究[D];中國(guó)地質(zhì)大學(xué);2017年
2 李軍;三維封裝電磁干擾的分析與防護(hù)設(shè)計(jì)[D];浙江大學(xué);2017年
3 彭偉敏;不可壓縮Navier-Stokes方程的幾類整體大解[D];復(fù)旦大學(xué);2013年
4 尹海燕;可壓縮Navier-Stokes-Poisson議程波的穩(wěn)定性[D];華中師范大學(xué);2015年
5 張麟;等熵可壓縮Navier-Stokes方程解的整體適定性與大時(shí)間性態(tài)[D];南京大學(xué);2015年
6 王梅;關(guān)于等熵可壓Navier-Stokes方程一些數(shù)學(xué)理論的研究[D];西北大學(xué);2015年
7 厚曉鳳;可壓縮Navier-Stokes-Korteweg方程組整體經(jīng)典解的存在性[D];華中師范大學(xué);2016年
8 朱圣國(guó);可壓等熵Navier-Stokes方程組的適定性和奇性形成[D];上海交通大學(xué);2015年
9 王尕平;Stokes流問題中的辛體系方法[D];大連理工大學(xué);2008年
10 孔瑋;Stokes層的全局穩(wěn)定性及間歇湍流特性[D];天津大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 吳海斌;低雷諾數(shù)下不可壓縮流動(dòng)問題的三維EFG法分析[D];湘潭大學(xué);2017年
2 吳豪杰;清oi河水質(zhì)三維仿真系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];鄭州大學(xué);2017年
3 孫營(yíng)偉;基于高分2號(hào)遙感數(shù)據(jù)的三維綠量估算模型研究[D];中國(guó)地質(zhì)大學(xué)(北京);2017年
4 楊玲;城市軌道交通線路三維快速設(shè)計(jì)中的地貌與地質(zhì)體三維建模與實(shí)現(xiàn)[D];石家莊鐵道大學(xué);2017年
5 李雪松;地下管網(wǎng)的三維建模系統(tǒng)研究與開發(fā)[D];天津大學(xué);2016年
6 陳驊;三維古建筑場(chǎng)景仿真研究[D];西安科技大學(xué);2017年
7 宋文靜;與Navier-Stokes方程有關(guān)方程類的非齊次與非線性邊值問題解的存在性[D];云南民族大學(xué);2015年
8 施海紅;求解可壓縮Navier-Stokes方程的高分辨率熵相容格式[D];長(zhǎng)安大學(xué);2015年
9 張玉梅;全Stokes偏振成像技術(shù)的研究[D];南京理工大學(xué);2015年
10 徐俊儒;含真空的三維可壓縮Navier-Stokes方程組的一類爆破準(zhǔn)則[D];上海交通大學(xué);2015年
,本文編號(hào):2043723
本文鏈接:http://sikaile.net/kejilunwen/yysx/2043723.html