二維粘性系數(shù)依賴于密度的不可壓MHD方程組強解的全局存在性
發(fā)布時間:2018-06-18 23:54
本文選題:不可壓縮流 + 非齊次MHD方程組。 參考:《西北大學》2017年碩士論文
【摘要】:本文主要研究了粘性系數(shù)μ(ρ)與磁擴散系數(shù)v(ρ)都依賴于密度ρ時,2維不可壓縮磁流體方程組在有界區(qū)域內(nèi)強解的全局存在性.方程的主要形式為(?)初始條件(ρ,u,B)|t=0=(ρ0,u0,B0),在Ω內(nèi).邊界條件u=0,B·(?)=0,curlB=0,d(?)Ω×[0,T)內(nèi).其中Ω(?)R2.變量ρ(x,t),u(x,t)分別代表流體的密度與速度;B(x,t)為磁場;P(x,t)為壓力.μ(ρ),υ(ρ)分別表示粘性系數(shù)和磁擴散系數(shù)均依賴于密度ρ,并且滿足μ(ρ),υ(ρ)∈ C1[0,∞),0<μ≤μ≤(?)和v≤v≤(?) 當ρ∈[0,∞)時.其中(?)為正常數(shù).
[Abstract]:In this paper, we study the global existence of strong solutions for incompressible magnetohydrodynamic equations in a bounded region when both viscosity coefficient 渭 (蟻) and magnetic diffusion coefficient v (蟻) depend on density 蟻. The main form of the equation is The initial condition (蟻 ~ (U) B) (蟻 _ (0) U _ (0) B _ (0) is in 惟. The boundary conditions are in the 惟 脳 [0T]. Among them, omega R2. The variable 蟻 ~ (x) (v (v) represents the density and velocity of the fluid, respectively) and the velocity of the fluid is a magnetic field. (渭 (蟻, v (蟻) respectively denotes that the viscosity coefficient and the magnetic diffusion coefficient depend on the density 蟻, and satisfy 渭 (蟻, v (蟻) 鈭,
本文編號:2037357
本文鏈接:http://sikaile.net/kejilunwen/yysx/2037357.html
最近更新
教材專著