直覺模糊測度的計算樹邏輯
發(fā)布時間:2018-06-17 11:20
本文選題:直覺模糊Kripke結(jié)構(gòu) + 直覺模糊測度 ; 參考:《計算機科學與探索》2017年09期
【摘要】:建立了直覺模糊Kripke結(jié)構(gòu)(intuitionistic fuzzy Kripke structure,IFKS)模型,提出了基于直覺模糊Kripke結(jié)構(gòu)的直覺模糊測度空間理論,闡述了IFKS的一系列性質(zhì)。證明了任一路徑轉(zhuǎn)移的直覺模糊可達度(intuitionistic fuzzy probability,IFP)為初始狀態(tài)的直覺模糊測度與各轉(zhuǎn)移的IFP所取下確界,任一狀態(tài)出發(fā)的所有路徑上路徑轉(zhuǎn)移的IFP為所有路徑可達度的上確界。給出了路徑轉(zhuǎn)移矩陣P及其傳遞閉包P~+的概念,給出了通過計算路徑轉(zhuǎn)移矩陣傳遞閉包,計算路徑可達度的算法,并分析了算法的復雜度。提出了直覺模糊計算樹邏輯(intuitionistic fuzzy computation tree logic,IFPCTL)理論,討論了一組IFPCTL、可能測度計算樹邏輯(possibilistic computation tree logic,PoCTL)和經(jīng)典計算樹邏輯(computation tree logic,CTL)公式的等價性。最后給出了一組等價的IFPCTL和PoCTL公式以及一組不等價的IFPCTL和CTL公式。
[Abstract]:The intuitionistic fuzzy Kripke structure (IFKS) model is established, and the intuitionistic fuzzy Kripke structure IFKS model is established. The intuitionistic fuzzy measure space theory based on intuitionistic fuzzy Kripke structure is proposed, and a series of properties of IFKS are expounded. It is proved that the intuitionistic fuzzy probability (IFP) of any path transition is an intuitionistic fuzzy probability (IFP), and that the intuitionistic fuzzy probability (IFP) of any path transition is the upper bound of the reachability of all paths. In this paper, the concept of path transfer matrix P and its transitive closure P ~ are given, and the algorithm of calculating path reachability by calculating path transfer matrix transfer closure is given, and the complexity of the algorithm is analyzed. In this paper, the intuitionistic fuzzy computation tree logic theory of intuitionistic fuzzy computation tree logic is put forward, and the equivalence of a set of IFPCTL, possibilistic computation tree logic PoCTL) and classical computational tree logic computation tree logics is discussed. Finally, a set of equivalent IFPCTL and PoCTL formulas and a set of non-equivalent IFPCTL and CTL formulas are given.
【作者單位】: 商洛學院數(shù)學與計算機應用學院;陜西師范大學計算機科學學院;
【基金】:國家自然科學基金(No.61228305) 陜西省教育廳專項科研計劃項目(No.2015JK0605) 商洛學院科研項目(No.15SKY001)~~
【分類號】:O159
【相似文獻】
相關(guān)期刊論文 前10條
1 吳從p,
本文編號:2030859
本文鏈接:http://sikaile.net/kejilunwen/yysx/2030859.html
最近更新
教材專著