使用Kantorovich定理計(jì)算變分不等式的可靠解
發(fā)布時(shí)間:2018-06-14 14:40
本文選題:variational + inequality ; 參考:《高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào)》2017年03期
【摘要】:正1引言給定R~n中非空子集Ω和函數(shù)F:R~n→R~n,變分不等式問(wèn)題(簡(jiǎn)記為VIP(Ω,F))是指尋求向量x~*∈Ω滿足(y-x~*)~T F(x~*)≥0,?y∈Ω.常見(jiàn)的VIP(Ω,F)是集合Ω為區(qū)間[l,u]的情形,即Ω=[l,u]={x=(xi)∈R~n|l_i≤x_i≤u_i,i=1,…,n},其中l(wèi)_iu_i,i=1,…,n.在一些文獻(xiàn)中,這一問(wèn)題也稱為混合互補(bǔ)問(wèn)題(見(jiàn)[7]).容易證明,x~*=(x_i~*)∈R~n是VIP([l,u],F)的解的充要條件是
[Abstract]:In the first introduction, given the nonempty subsets 惟 and the function F: r n n of rn, the variational inequality problem (abbreviated as VIP (惟 ~ F _ (n) means that the vector XV * 鈭,
本文編號(hào):2017738
本文鏈接:http://sikaile.net/kejilunwen/yysx/2017738.html
最近更新
教材專著