一類時空Caputo-Riesz分?jǐn)?shù)階擴(kuò)散問題的自適應(yīng)并行AMG法
本文選題:Caputo-Riesz分?jǐn)?shù)階擴(kuò)散問題 + 時空有限元全離散格式; 參考:《湘潭大學(xué)》2017年碩士論文
【摘要】:分?jǐn)?shù)階擴(kuò)散方程是一類應(yīng)用廣泛的分?jǐn)?shù)階微分方程.本文針對一類時空Caputo-Riesz分?jǐn)?shù)階擴(kuò)散問題,構(gòu)造了一種時間和空間方向分別采用m次和線性有限元方法的全離散格式,在空間一致網(wǎng)格剖分下,證明了該格式的系數(shù)矩陣為分塊Toeplitz矩陣,數(shù)值實(shí)驗驗證了時空有限元解函數(shù)在L2(Ω)范數(shù)下具有飽和誤差階.針對時空有限元全離散系統(tǒng),通過數(shù)值實(shí)驗得到了該離散系統(tǒng)系數(shù)矩陣的條件數(shù)估計式;并基于該估計式與快速Fourier變換,構(gòu)造和分析了一種求解時空有限元全離散系統(tǒng)的低復(fù)雜度自適應(yīng)并行代數(shù)多重網(wǎng)格(AMG)法,數(shù)值實(shí)驗結(jié)果表明新算法具有穩(wěn)健性、高效性以及良好的并行加速比.進(jìn)一步,針對影響AMG法是否穩(wěn)健的強(qiáng)弱連通參數(shù),給出并分析了其有效閾值θ0的參考公式,并設(shè)計了一種基于θ0自適應(yīng)選取的高效并行AMG法.
[Abstract]:Fractional diffusion equation is a kind of widely used fractional differential equation. In this paper, for a class of space-time Caputo-Riesz fractional diffusion problem, we construct a fully discrete scheme with m and linear finite element methods for time and space directions respectively. It is proved that the coefficient matrix of the scheme is a block Toeplitz matrix. Numerical experiments show that the solution function of space-time finite element has saturation error order under L _ 2 (惟) norm. The condition number estimation of the coefficient matrix of the discrete system is obtained by numerical experiments for the space-time finite element fully discrete system, and based on the estimation formula and the fast Fourier transform, In this paper, a low complexity adaptive parallel algebraic multigrid AMG method is constructed and analyzed for fully discrete time-space finite element systems. The numerical results show that the new algorithm is robust, efficient and has good parallel speedup. Furthermore, the reference formula of effective threshold 胃 _ 0 is given and analyzed for the strong and weak connected parameters that influence the robustness of AMG method. An efficient parallel AMG method based on 胃 _ 0 adaptive selection is designed.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O241.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙羽,蔡平,周敏東;分?jǐn)?shù)階Fourier變換的數(shù)值計算[J];哈爾濱工程大學(xué)學(xué)報;2002年06期
2 王德金;鄭永愛;;分?jǐn)?shù)階混沌系統(tǒng)的延遲同步[J];動力學(xué)與控制學(xué)報;2010年04期
3 楊晨航,劉發(fā)旺;分?jǐn)?shù)階Relaxation-Oscillation方程的一種分?jǐn)?shù)階預(yù)估-校正方法[J];廈門大學(xué)學(xué)報(自然科學(xué)版);2005年06期
4 王發(fā)強(qiáng);劉崇新;;分?jǐn)?shù)階臨界混沌系統(tǒng)及電路實(shí)驗的研究[J];物理學(xué)報;2006年08期
5 夏源;吳吉春;;分?jǐn)?shù)階對流——彌散方程的數(shù)值求解[J];南京大學(xué)學(xué)報(自然科學(xué)版);2007年04期
6 張隆閣;;一類參數(shù)不確定混沌系統(tǒng)的分?jǐn)?shù)階自適應(yīng)同步[J];中國科技信息;2009年15期
7 陳世平;劉發(fā)旺;;一維分?jǐn)?shù)階滲透方程的數(shù)值模擬[J];高等學(xué)校計算數(shù)學(xué)學(xué)報;2010年04期
8 辛寶貴;陳通;劉艷芹;;一類分?jǐn)?shù)階混沌金融系統(tǒng)的復(fù)雜性演化研究[J];物理學(xué)報;2011年04期
9 黃睿暉;;分?jǐn)?shù)階微方程的迭代方法研究[J];長春理工大學(xué)學(xué)報;2011年06期
10 蔣曉蕓,徐明瑜;分形介質(zhì)分?jǐn)?shù)階反常守恒擴(kuò)散模型及其解析解[J];山東大學(xué)學(xué)報(理學(xué)版);2003年05期
相關(guān)會議論文 前10條
1 李西成;;經(jīng)皮吸收的分?jǐn)?shù)階藥物動力學(xué)模型[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
2 謝勇;;分?jǐn)?shù)階模型神經(jīng)元的動力學(xué)行為及其同步[A];第四屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2010年
3 張碩;于永光;王亞;;帶有時滯和隨機(jī)擾動的不確定分?jǐn)?shù)階混沌系統(tǒng)準(zhǔn)同步[A];中國力學(xué)大會——2013論文摘要集[C];2013年
4 李常品;;分?jǐn)?shù)階動力學(xué)的若干關(guān)鍵問題及研究進(jìn)展[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 李常品;;分?jǐn)?shù)階動力學(xué)簡介[A];第三屆海峽兩岸動力學(xué)、振動與控制學(xué)術(shù)會議論文摘要集[C];2013年
6 蔣曉蕓;徐明瑜;;時間依靠分?jǐn)?shù)階Schr銉dinger方程中的可動邊界問題[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
7 王花;;分?jǐn)?shù)階混沌系統(tǒng)的同步在圖像加密中的應(yīng)用[A];第二屆全國隨機(jī)動力學(xué)學(xué)術(shù)會議摘要集與會議議程[C];2013年
8 王在華;;分?jǐn)?shù)階動力系統(tǒng)的若干問題[A];第三屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2009年
9 張碩;于永光;王莎;;帶有時滯和隨機(jī)擾動的分?jǐn)?shù)階混沌系統(tǒng)同步[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運(yùn)動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
10 李西成;;一個具有糊狀區(qū)的分?jǐn)?shù)階可動邊界問題的相似解研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 陳善鎮(zhèn);兩類空間分?jǐn)?shù)階偏微分方程模型有限差分逼近的若干研究[D];山東大學(xué);2015年
2 任永強(qiáng);油藏與二氧化碳埋存問題的數(shù)值模擬與不確定性量化分析以及分?jǐn)?shù)階微分方程的數(shù)值方法[D];山東大學(xué);2015年
3 蔣敏;分?jǐn)?shù)階微分方程理論分析與應(yīng)用問題的研究[D];電子科技大學(xué);2015年
4 卜紅霞;基于分?jǐn)?shù)階傅里葉域稀疏表征的CS-SAR成像理論與算法研究[D];北京理工大學(xué);2015年
5 楊變霞;分?jǐn)?shù)階Laplace算子的譜理論及其在微分方程中的應(yīng)用[D];蘭州大學(xué);2015年
6 邵晶;幾類微分系統(tǒng)的定性理論及其應(yīng)用[D];曲阜師范大學(xué);2015年
7 方益;分?jǐn)?shù)階Yamabe問題的一些緊性結(jié)果[D];中國科學(xué)技術(shù)大學(xué);2015年
8 王國濤;幾類分?jǐn)?shù)階非線性微分方程解的存在理論及應(yīng)用[D];西安電子科技大學(xué);2014年
9 陳明華;分?jǐn)?shù)階微分方程的高階算法及理論分析[D];蘭州大學(xué);2015年
10 尹學(xué)輝;基于分?jǐn)?shù)階PDE的圖像結(jié)構(gòu)保持型去噪算法研究[D];重慶大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 王帥;一類時空Caputo-Riesz分?jǐn)?shù)階擴(kuò)散問題的自適應(yīng)并行AMG法[D];湘潭大學(xué);2017年
2 黃志穎;非線性時間分?jǐn)?shù)階微分方程的數(shù)值解法[D];華南理工大學(xué);2015年
3 趙九龍;基于分?jǐn)?shù)階微積分的三維圖像去噪增強(qiáng)算法研究[D];寧夏大學(xué);2015年
4 楚彩虹;單載波分?jǐn)?shù)階傅里葉域均衡系統(tǒng)及關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2015年
5 全曉靜;非線性分?jǐn)?shù)階積分方程的Adomian解法[D];寧夏大學(xué);2015年
6 黃潔;非線性分?jǐn)?shù)階Volterra積分微分方程的小波數(shù)值解法[D];寧夏大學(xué);2015年
7 莊嶠;復(fù)合介質(zhì)中時間分?jǐn)?shù)階熱傳導(dǎo)正逆問題及其應(yīng)用研究[D];山東大學(xué);2015年
8 高素娟;分?jǐn)?shù)階延遲偏微分方程的緊致有限差分方法[D];山東大學(xué);2015年
9 趙珊珊;時—空分?jǐn)?shù)階擴(kuò)散方程的快速算法以及MT-TSCR-FDE的快速數(shù)值解法[D];山東大學(xué);2015年
10 王珍;分?jǐn)?shù)階奇異邊值問題的研究[D];山東師范大學(xué);2015年
,本文編號:2017093
本文鏈接:http://sikaile.net/kejilunwen/yysx/2017093.html