天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

求解第二類剛性Volterra積分方程和時間分數(shù)階反應(yīng)擴散方程的Runge-Kutta-Chebyshev方法

發(fā)布時間:2018-06-14 09:57

  本文選題:Runge-Kutta-Chebyshev方法 + 時間分數(shù)階反應(yīng)擴散方程; 參考:《吉林大學(xué)》2015年博士論文


【摘要】:本文研究了求解第二類非線性剛性Volterra積分方程的顯式Pouzet-Runge-Kutta-Chebyshev (PRKC)方法和求解Caputo導(dǎo)數(shù)意義下時間分數(shù)階反應(yīng)次擴散方程的顯式Abel-Runge-Kutta-Chebyshev (ARKC)方法.Runge-Kutta (RK)方法是一類經(jīng)典的用于求解常微分方程的單步數(shù)值解法.顯式Rvnge-Kutta-Chebyshev (RKC)方法是一類穩(wěn)定的RK方法,具有一階和二階,且其在復(fù)平面上沿負實軸方向的絕對穩(wěn)定區(qū)域長度與s2(s為級數(shù))成正比.因此,顯式RKC方法能夠用于求解非線性大維數(shù)剛性常微分方程組.其良好的穩(wěn)定性質(zhì)來自于以第一類Chebyshev多項式為基礎(chǔ)構(gòu)造方法的穩(wěn)定性函數(shù).通過空間離散, Caputo導(dǎo)數(shù)意義下時間分數(shù)階反應(yīng)次擴散方程初邊值問題能夠轉(zhuǎn)化為第二類非線性剛性且具有弱奇性核的Volterra積分方程.因此,兩類問題的共同特點就是都具有非線性和剛性.由于隱格式的方法不容易實現(xiàn),所以我們利用顯式RKC方法的思想,構(gòu)造求解這兩類問題的數(shù)值方法.本文分四章,最后一章是總結(jié),前三章的內(nèi)容包括:第一章是緒論,介紹了相關(guān)內(nèi)容的背景和理論基礎(chǔ),即第二類Volterra積分方程,時間分數(shù)階反應(yīng)擴散方程,求解常微分方程的RK方法和顯式RKC方法,以及求解第二類非奇性和弱奇性Volterra積分方程的RK方法.第二章,我們研究了求解第二類非線性剛性Volterra積分方程的顯式PRKC方法.因為求解第二類Volterra積分方程的Pouzet類Volterra-Runge-Kutta (Pouzet-Volterra-Runge-Kutta, PVRK)方法與對應(yīng)求解常微分方程的RK方法不但具有相同的絕對穩(wěn)定區(qū)域,而且具有相同的階數(shù),所以我們選擇PVRK方法作為我們的研究對象.首先,我們分析了PVRK方法關(guān)于基本測試方程的絕對穩(wěn)定性;接著,根據(jù)顯式RKC方法的思想,我們利用第一類Chebyshev多項式構(gòu)造顯式PVRK方法的穩(wěn)定性函數(shù),推導(dǎo)出求解第二類非線性剛性Volterra積分方程的顯式二階PRKC方法.然后,討論了顯式PRKC方法關(guān)于卷積型測試方程的絕對穩(wěn)定性,以及相關(guān)的絕對穩(wěn)定性的數(shù)值研究,包括顯式三級PRKC方法絕對穩(wěn)定性和穩(wěn)定區(qū)域與算法參數(shù)ε和s數(shù)量之間的關(guān)系.最后,通過數(shù)值實驗證明了PRKC方法能夠有效性地求解第二類非線性剛性Volterra積分方程,以及通過調(diào)整s和ε的數(shù)量能夠改變穩(wěn)定區(qū)域.第三章,我們研究了求解Caputo導(dǎo)數(shù)意義下時間分數(shù)階反應(yīng)次擴散方程的顯式ARKC方法.因為通過空間離散,Caputo導(dǎo)數(shù)意義下時間分數(shù)階反應(yīng)次擴散方程初邊值問題能夠轉(zhuǎn)化為第二類非線性剛性且具有弱奇性核的Volterra積分方程組,所以這章我們求解的問題就是后者.首先,我們找到了ARK方法和Volterra-Runge-Kutta (VRK)方法系數(shù)之間的關(guān)系,根據(jù)這個關(guān)系能夠用VRK方法的系數(shù)構(gòu)造一階的ARK方法的系數(shù).接著,利用前面的關(guān)系,以PRKC方法為基礎(chǔ)構(gòu)造了求解Caputo導(dǎo)數(shù)意義下的時間分數(shù)階反應(yīng)次擴散方程(即第二類非線性剛性且具有弱奇性核的Volterra積分方程)的顯式Abel-Runge-Kutta-Chebyshev (ARKC)方法.然后,通過數(shù)值的方法分析了顯式ARKC方法關(guān)于測試方程的絕對穩(wěn)定性,推出了方法的參數(shù)s,ε與測試方程參數(shù)λ,α之間的關(guān)系.最后,通過數(shù)值實驗驗證了顯式ARKC方法能夠有效地求解Caputo導(dǎo)數(shù)意義下時間分數(shù)階反應(yīng)次擴散方程初邊值問題,以及方法的參數(shù)s,ε與方程參數(shù)α之間的關(guān)系.1.求解第二類剛性Volterra積分方程的PRKC方法第二類剛性Volterra積分方程為其中(?)K/(?)y和(?)2K/(?)t(?) y皆為絕對值很大的負數(shù).取則求解第二類剛性Volterra積分方程(1)的s級顯式Pouzet-Runge-Kutta-Chebyshev (PRKC)方法為:其中Yni,yn+1分別為y(tn+cih)和y(tn+h)近似值,且滿足的近似值.其系數(shù)定義為:其中2.求解時間分數(shù)階反應(yīng)擴散方程的顯性RKC方法通過空間離散,Caputo導(dǎo)數(shù)意義下時間分數(shù)階反應(yīng)次擴散方程能夠轉(zhuǎn)化為第二類非線性剛性且弱奇性的Volterra積分方程取求解第二類非奇性剛性且弱奇性Volterra積分方程(3)的s級顯式Abel-Runge-Kutta-Chebyshev (ARKC)方法為其中的近似值.系數(shù)定義為:其中aij,bj,ci是s級顯式PRKC方法(2)的系數(shù).
[Abstract]:In this paper, the explicit Pouzet-Runge-Kutta-Chebyshev (PRKC) method for solving second classes of nonlinear rigid Volterra integral equations and the explicit Abel-Runge-Kutta-Chebyshev (ARKC) method of Abel-Runge-Kutta-Chebyshev (ARKC) method for solving the fractional order reaction of time fractional order reaction under the sense of Caputo derivative.Runge-Kutta (RK) are a class of classical solutions for solving ordinary differential equations. The explicit Rvnge-Kutta-Chebyshev (RKC) method is a class of stable RK methods with the first and two orders, and the absolute stability region length along the negative real axis is proportional to the S2 (s Series) in the complex plane. Therefore, the explicit RKC method can be used to solve the nonlinear large dimensional rigid ordinary differential equations. The stability property is derived from the stability function of the construction method based on the first class of Chebyshev polynomials. By space discretization, the initial boundary value problem of the time fractional order reaction of the time fractional order reaction of the time fractional order reaction in the sense of Caputo derivative can be converted to the second class of nonlinear rigid and weakly singular Volterra integral equations. Therefore, the common special characteristics of the two kinds of problems are common. The points are both nonlinear and rigid. Because the implicit method is not easy to implement, we use the idea of explicit RKC to construct numerical methods for solving these two kinds of problems. This paper is divided into four chapters, the last chapter is a summary, the first chapter of the three chapter is the introduction, introducing the background and theoretical basis of the related content, that is, the first chapter. The two kind of Volterra integral equation, the time fractional order reaction diffusion equation, the RK method and explicit RKC method for solving the ordinary differential equation, and the RK method for solving the second kind of non singular and weak singular Volterra integral equation. The second chapter, we study the explicit PRKC method for solving the second class of nonlinear rigid Volterra integral equations. Because the solution second is solved second. The Pouzet class Volterra-Runge-Kutta (Pouzet-Volterra-Runge-Kutta, PVRK) method of the class Volterra integral equation and the RK method corresponding to the ordinary differential equation not only have the same absolute stable region, but also have the same order, so we choose the PVRK method as our research object. First, we analyze the PVRK method. On the basis of the absolute stability of the basic test equation, then, according to the idea of the explicit RKC method, we use the first class of Chebyshev polynomials to construct the stability function of the explicit PVRK method, and derive the explicit two order PRKC method for solving second classes of nonlinear rigid Volterra integral equations. The absolute stability of the equation and the numerical study of the relative absolute stability, including the relationship between the absolute stability of the explicit three stage PRKC method and the stable region and the number of algorithm parameters, and the number of S. Finally, the numerical experiments show that the PRKC method can effectively solve the second class of nonlinear rigid Volterra integral equations and pass through the numerical experiments. The number of adjusting s and epsilon can change the stable region. In the third chapter, we study the explicit ARKC method for solving the time fractional diffusion equation of the time fractional order in the sense of Caputo derivative, because the initial boundary value problem of the time fractional order reaction of the time fractional order reaction in the sense of the Caputo derivative can be converted to the second class of nonlinear rigidity by space discretization. The Volterra integral equations of the weakly singular kernel, so the problem we solve in this chapter is the latter. First, we find the relationship between the ARK method and the coefficient of the Volterra-Runge-Kutta (VRK) method. According to this relation, we can construct the coefficient of the first order ARK method with the coefficient of the VRK method. Then, using the previous relation, the PRKC method is used. The explicit Abel-Runge-Kutta-Chebyshev (ARKC) method for the time fractional order reaction sub diffusion equation (the second class of nonlinear rigid and weakly singular Volterra integral equations) under the Caputo derivative is constructed. Then, the absolute stability of the explicit ARKC method on the test equation is analyzed by the numerical method. The relationship between the parameters s, epsilon and the parameter of the test equation, a and the alpha. Finally, through numerical experiments, it is proved that the explicit ARKC method can effectively solve the initial boundary value problem of the time fractional order rediffusion equation under the Caputo derivative, and the relation between the parameter s, the equation parameter and the equation parameter.1. to solve the second kind of rigid Volterra. The second class rigid Volterra integral equation of the integral equation is a negative number of the absolute values of the (?) K/ (?) y and (?) 2K/ (?) t (?) y. The s explicit Pouzet-Runge-Kutta-Chebyshev (PRKC) method for solving the second class rigid Volterra integral equation (1) is as follows: Yni, and satisfies the approximate value of Pouzet-Runge-Kutta-Chebyshev (PRKC). The coefficient is defined as: 2. of the explicit RKC methods for solving the time fractional order reaction diffusion equation are discretized by space, and the time fractional order rediffusion equation in the sense of Caputo derivative can be converted into the second class of nonlinear rigid and weakly singular Volterra integral equations to solve second kinds of non singular rigid and weak singularity Volte The s level explicit Abel-Runge-Kutta-Chebyshev (ARKC) method of the RRA integral equation (3) is the approximate value. The coefficients are defined as AIJ, BJ, and CI are the coefficients of the s class explicit PRKC method (2).
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:O241.8

【相似文獻】

相關(guān)期刊論文 前10條

1 陳芳啟,田瑞蘭;Existence of Solutions to Nonlinear Impulsive Volterra Integral Equations in Banach Spaces[J];Transactions of Tianjin University;2005年02期

2 劉鋒;葛照強;;Volterra系統(tǒng)全局穩(wěn)定、扇形穩(wěn)定及關(guān)聯(lián)穩(wěn)定的一些新判據(jù)(英文)[J];數(shù)學(xué)季刊;2007年02期

3 Raed S. Batahan;;Volterra Integral Equation of Hermite Matrix Polynomials[J];Analysis in Theory and Applications;2013年02期

4 王克;;Necessary and Sufficient Condition for the Unique Existence of Periodic Solution of Linear Volterra Equations[J];Acta Mathematica Sinica;1993年02期

5 孫澎濤;MIXED FINITE ELEMENTS FOR PARABOLICINTEGRO-DIFFERENTIAL EQUATIONS[J];Acta Mathematica Scientia;1997年03期

6 劉會民,張樹文,張玉娟,王克;線性Volterra方程的漸近周期解[J];鞍山鋼鐵學(xué)院學(xué)報;1998年02期

7 蓋明久 ,時寶 ,楊淑榮;具有多個時滯的周期Lotka-Volterra系統(tǒng)(英文)[J];Annals of Differential Equations;2002年01期

8 M.Federson,R.Bianconi,L.Barbanti;Linear Volterra Integral Equations[J];Acta Mathematicae Applicatae Sinica(English Series);2002年04期

9 劉海英,羅吉貴,趙曉華;ON CRITERIA FOR GLOBAL STABILITY OF N-DIMENSIONAL LOTKA-VOLTERRA SYSTEMS[J];Annals of Differential Equations;2003年03期

10 胡曉華,虞敏;周期時間制約三維Volterra方程的周期解分枝[J];生物數(shù)學(xué)學(xué)報;2004年04期

相關(guān)會議論文 前6條

1 ;Near-Optimal Controls for a Class of Volterra Integral Systems with Nonlinear Time Delays[A];第25屆中國控制會議論文集(上冊)[C];2006年

2 ;Existence Theory for Single and Multiple Positive Periodic Solutions to Volterra Integro-Differential Equations[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年

3 程長明;彭志科;賀書文;孟光;;基于小波平衡法和B樣條小波的Volterra核函數(shù)辨識方法[A];中國力學(xué)大會——2013論文摘要集[C];2013年

4 ;A Method of LCD Motion De-blur Based-on the Volterra System Identification[A];第24屆中國控制與決策會議論文集[C];2012年

5 劉中華;耿建華;朱位秋;;時滯Lotka-Volterra生態(tài)系統(tǒng)隨機分析[A];The 5th 全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2011年

6 Hoda Moodi;Danyal Bustan;;On Identification of Nonlinear Systems Using Volterra Kernels Expansion on Laguerre and Wavelet Function[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年

相關(guān)博士學(xué)位論文 前10條

1 王云海;跨音速氣動力辨識問題的研究[D];南京航空航天大學(xué);2014年

2 朱本喜;比例時滯Volterra積分方程及美式期權(quán)定價問題的數(shù)值方法研究[D];吉林大學(xué);2015年

3 張李梅;求解第二類剛性Volterra積分方程和時間分數(shù)階反應(yīng)擴散方程的Runge-Kutta-Chebyshev方法[D];吉林大學(xué);2015年

4 王天嘯;倒向隨機Volterra積分方程的理論及相關(guān)問題[D];山東大學(xué);2013年

5 劉亞平;第一類弱奇異Volterra積分方程的超收斂技術(shù)[D];四川大學(xué);2006年

6 陳建華;抽象空間中的Volterra方程與線性系統(tǒng)[D];中國科學(xué)技術(shù)大學(xué);2010年

7 呂文;由Levy過程驅(qū)動的反射倒向隨機微分方程與倒向隨機Volterra積分方程[D];山東大學(xué);2011年

8 李文學(xué);某些隨機延遲微分方程與隨機Volterra積分方程的穩(wěn)定性[D];哈爾濱工業(yè)大學(xué);2009年

9 陶霞;求解Volterra積分微分方程的高階方法[D];湖南師范大學(xué);2012年

10 曹峰;兩維Lotka-Volterra系統(tǒng)的拓撲分類及非自治/隨機單調(diào)系統(tǒng)的全局性態(tài)[D];中國科學(xué)技術(shù)大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 楊靜;兩類時滯Lotka-Volterra模型穩(wěn)定性研究[D];東北林業(yè)大學(xué);2015年

2 陳春霞;基干Volterra濾波器的非線性主動噪聲控制研究[D];西南交通大學(xué);2015年

3 甘慧萍;基于IGA的Volterra核辨識及機械振動信號消噪方法研究[D];蘭州交通大學(xué);2015年

4 蘇蓉;Volterra Process樣本性質(zhì)的研究[D];湘潭大學(xué);2015年

5 倪潤雯;非線性離散Volterra方程的周期解[D];蘇州大學(xué);2006年

6 郭迎;高維Lotka-Volterra系統(tǒng)的周期解[D];昆明理工大學(xué);2003年

7 呂貴臣;Lotka-Volterra系統(tǒng)整體性質(zhì)的一些研究[D];溫州大學(xué);2009年

8 朱偉強;兩種群Lotka-Volterra離散系統(tǒng)的永久生存性[D];溫州大學(xué);2010年

9 劉麗英;非自治線性Volterra方程解的性質(zhì)[D];成都理工大學(xué);2011年

10 王其高;基于Volterra核模擬電路故障診斷的測試激勵優(yōu)化及實現(xiàn)[D];哈爾濱理工大學(xué);2013年

,

本文編號:2016989

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2016989.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ea1bf***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
日韩人妻精品免费一区二区三区| 情一色一区二区三区四| 日韩黄片大全免费在线看 | 色婷婷国产熟妇人妻露脸| 99久久精品国产日本| 日韩无套内射免费精品| 麻豆视传媒短视频在线看| 久久精品国产第一区二区三区| 国产午夜精品亚洲精品国产| 暴力性生活在线免费视频| 欧美国产日韩变态另类在线看| 嫩草国产福利视频一区二区| 中文字幕久久精品亚洲乱码| 国产熟女一区二区不卡| 麻豆精品视频一二三区| 亚洲天堂精品一区二区| 98精品永久免费视频| 老司机精品一区二区三区| 婷婷激情五月天丁香社区| 欧美日韩国产一级91| 精品综合欧美一区二区三区| 欧美性猛交内射老熟妇| 欧美一区日韩二区亚洲三区| 日韩中文无线码在线视频| 欧美一级不卡视频在线观看| 美国欧洲日本韩国二本道| 日本加勒比中文在线观看| 亚洲一区二区三区四区| 五月天婷亚洲天婷综合网| 91亚洲精品亚洲国产| 国产亚洲二区精品美女久久| 99国产精品国产精品九九| 日本视频在线观看不卡| 色婷婷亚洲精品综合网| 免费播放一区二区三区四区 | 成人国产激情福利久久| 欧美日韩最近中国黄片| 亚洲日本加勒比在线播放| 一级片黄色一区二区三区| 国产一区二区三区香蕉av| 欧美日韩精品人妻二区三区|