帶激活費(fèi)用的恒速機(jī)的有限資源博弈排序問(wèn)題
發(fā)布時(shí)間:2018-06-07 06:42
本文選題:激活費(fèi)用 + 恒速機(jī); 參考:《曲阜師范大學(xué)》2016年碩士論文
【摘要】:本文主要研究在資源有限前提下帶激活費(fèi)用的恒速機(jī)上工件的博弈排序問(wèn)題.機(jī)器初始狀態(tài)未被激活,激活每一臺(tái)機(jī)器都會(huì)產(chǎn)生一定的激活費(fèi)用.沒(méi)有中心權(quán)力者來(lái)控制排序,每一個(gè)工件相當(dāng)于一個(gè)局中人,它們會(huì)極小化個(gè)體成本來(lái)選擇機(jī)器進(jìn)行加工,其中每一個(gè)工件的個(gè)體成本是它選擇的機(jī)器的完工時(shí)間與其所要承擔(dān)的那部分激活費(fèi)用之和.用無(wú)序代價(jià)(POA)來(lái)衡量最差的納什均衡(NE)排序的社會(huì)成本與最優(yōu)值之間的差異.本文將有限臺(tái)恒速機(jī)、激活費(fèi)用綜合考慮,分別對(duì)帶激活費(fèi)用的兩臺(tái)和m臺(tái)恒速機(jī)的博弈排序問(wèn)題的不同目標(biāo)函數(shù)進(jìn)行了研究.第一章主要介紹了排序問(wèn)題、博弈理論和博弈排序問(wèn)題的研究背景、相關(guān)理論知識(shí)和研究現(xiàn)狀,并簡(jiǎn)要說(shuō)明了本文的主要研究成果及創(chuàng)新點(diǎn).第二章主要研究帶激活費(fèi)用的兩臺(tái)恒速機(jī)上工件的博弈排序問(wèn)題的模型(?).模型中,兩臺(tái)機(jī)器的速度分別為1和α,機(jī)器的激活費(fèi)用B與其速度相同.社會(huì)成本(?)為所有工件的個(gè)體成本Cj之和,目標(biāo)為極小化社會(huì)成本.通過(guò)對(duì)模型POA的分析,我們得到了POA的上界α+1,證明并給出了POA下界α-1的一個(gè)實(shí)例.第三章主要研究帶相同激活費(fèi)用的m臺(tái)恒速機(jī)上工件的博弈排序問(wèn)題的兩個(gè)模型,即(?).模型中,有m臺(tái)速度不同的機(jī)器,機(jī)器Mi的速度為α1,假設(shè)α1α2…αm且α1=1.P為所有工件的加工時(shí)間之和,每臺(tái)機(jī)器的激活費(fèi)用B均為1.模型一的社會(huì)成本(?)為所有工件的個(gè)體成本Cj之和,目標(biāo)為極小化社會(huì)成本.通過(guò)對(duì)模型POA的分析,我們得到了POA的上界(?);模型二的社會(huì)成本Cmax為工件的最大個(gè)體成本,目標(biāo)為極小化社會(huì)成本.通過(guò)對(duì)模型POA的分析,我們得到了POA的上界(?).第四章主要研究帶不同激活費(fèi)用的m臺(tái)恒速機(jī)上工件的博弈排序問(wèn)題的模型Qm(·),B=αi|ut=-Cj|Cmax.模型中,有m臺(tái)速度不同的機(jī)器,機(jī)器Mi的速度為αi,激活費(fèi)用B也為αi,假設(shè)α1α2…αm且α1=1.社會(huì)成本Cmax為工件的最大個(gè)體成本,目標(biāo)為極小化社會(huì)成本.通過(guò)對(duì)模型POA的分析,我們得到了POA的上界(?).
[Abstract]:In this paper, we mainly study the game ordering problem of the workpiece with activation cost under the condition of limited resources. The initial state of the machine is not activated, each machine will be activated at a certain cost. There are no central weights to control the sort, each job is the equivalent of a player, and they minimise individual costs to select machines for processing. The individual cost of each of the workpieces is the sum of the completion time of the machine it chooses and the portion of the activation cost it has to bear. The difference between the social cost and the optimal value of the worst Nash equilibrium is measured by using the disordered cost (POA). In this paper, the different objective functions of the game ordering problem of two constant speed machines with activation cost and m constant speed machines are studied. The first chapter mainly introduces the sequencing problem, the game theory and the research background of the game scheduling problem, related theoretical knowledge and research status, and briefly explains the main research results and innovation points of this paper. In chapter 2, the model of game ordering problem for two machines with activation cost is studied. In the model, the speed of the two machines is 1 and 偽, respectively, and the activation cost B of the machine is the same as its speed. Social costs) The goal is to minimize the social cost for the sum of individual costs of all artifacts. By analyzing the model POA, we obtain the upper bound 偽 1 of POA and give an example of POA lower bound 偽 -1. In chapter 3, we mainly study two models of the game ordering problem of the workpiece of m machine with the same activation cost. In the model, there are m machines with different speeds. The speed of machine Mi is 偽 1. Assume that 偽 1 偽 2 鈥,
本文編號(hào):1990243
本文鏈接:http://sikaile.net/kejilunwen/yysx/1990243.html
最近更新
教材專著