均衡約束優(yōu)化問(wèn)題的若干研究
本文選題:均衡約束數(shù)學(xué)規(guī)劃 + 同倫方法 ; 參考:《吉林大學(xué)》2016年博士論文
【摘要】:均衡約束數(shù)學(xué)規(guī)劃問(wèn)題(Mathematical Programs with Equilibrium Constraints,簡(jiǎn)稱(chēng)MPEC)是指約束集中含有參數(shù)變分不等式、互補(bǔ)問(wèn)題和廣義方程的約束規(guī)劃問(wèn)題.該問(wèn)題廣泛應(yīng)用于數(shù)理經(jīng)濟(jì),工程設(shè)計(jì),化學(xué)工程,交通科學(xué)等領(lǐng)域,并且與變分不等式問(wèn)題、Nash均衡、互補(bǔ)問(wèn)題等有著緊密的聯(lián)系.然而由于MPEC問(wèn)題的可行域不滿(mǎn)足大部分的約束規(guī)范,尤其是M-F約束規(guī)范(Magasarian-Fromvitz),在可行域的任意一點(diǎn)處都不滿(mǎn)足,所以這類(lèi)問(wèn)題在理論分析和算法求解中都是非常困難的.在過(guò)去的二十多年里,關(guān)于MPEC問(wèn)題在理論和算法方面的研究取得了豐碩的成果,但是仍有許多問(wèn)題有待于解決.在本文中,我們基于投影函數(shù)和光滑化理論,利用組合同倫算法深入研究了幾類(lèi)帶有均衡約束的數(shù)學(xué)規(guī)劃問(wèn)題和均衡約束多目標(biāo)優(yōu)化問(wèn)題,主要取得了以下成果.1、研究帶有有界箱式約束變分不等式的數(shù)學(xué)規(guī)劃問(wèn)題.首先將所求問(wèn)題中的變分不等式價(jià)轉(zhuǎn)化為帶有投影函數(shù)的非光滑等式,再基于箱式約束集合的特點(diǎn),利用Cabriel-More光滑函數(shù)逼近等式中的非光滑部分,構(gòu)造一個(gè)帶參數(shù)的等式約束,對(duì)轉(zhuǎn)化后的數(shù)學(xué)規(guī)劃問(wèn)題的KKT系統(tǒng)構(gòu)造同倫方程.這種做法既不需要假設(shè)函數(shù)F具有強(qiáng)單調(diào)性,也不需要引入額外的變量,而且在后續(xù)的計(jì)算中方便了初始點(diǎn)的選取.最后證明了同倫路徑的存在性和大范圍的收斂性,并通過(guò)數(shù)值實(shí)驗(yàn)驗(yàn)證了算法的可行性和有效性.2、建立了互補(bǔ)約束數(shù)學(xué)規(guī)劃問(wèn)題的同倫算法.首先將帶有互補(bǔ)約束的數(shù)學(xué)規(guī)劃問(wèn)題轉(zhuǎn)化為一般的非光滑函數(shù)約束的非線(xiàn)性規(guī)劃問(wèn)題.然后利用光滑化手段把其中的非光滑等式約束轉(zhuǎn)化為光滑函數(shù)的等式約束.從而將前述的數(shù)學(xué)規(guī)劃問(wèn)題轉(zhuǎn)化為光滑函數(shù)約束的數(shù)學(xué)規(guī)劃問(wèn)題,這樣避免了引入更多的乘子變量.對(duì)最后得到的光滑規(guī)劃問(wèn)題的KKT系統(tǒng)構(gòu)造同倫方程,證明了同倫路徑的存在性和收斂性,同時(shí)證明了所求得到的KKT點(diǎn)是原問(wèn)題的C-穩(wěn)定點(diǎn),并且利用數(shù)值算例驗(yàn)證了算法的可行性和有效性.3、構(gòu)建了求解帶有均衡約束的多目標(biāo)優(yōu)化問(wèn)題的新的同倫算法.首先利用SBCQ約束規(guī)范將原問(wèn)題等價(jià)轉(zhuǎn)化帶有KKT系統(tǒng)的一般的多目標(biāo)問(wèn)題,將上述的KKT系統(tǒng)轉(zhuǎn)化為一個(gè)光滑的等式約束,進(jìn)而得到一個(gè)帶有等式和不等式約束的多目標(biāo)規(guī)劃問(wèn)題,最后對(duì)轉(zhuǎn)化后的等價(jià)問(wèn)題的KKT系統(tǒng)構(gòu)造同倫方程,證明了同倫路徑地存在性和收斂性.最后用數(shù)值實(shí)驗(yàn)證明了所提出的算法的可行性和有效性.4、討論了約束條件中變分不等式定義在一般閉凸集上的均衡約束規(guī)劃問(wèn)題.通過(guò)引入無(wú)窮遠(yuǎn)解的概念,將所求的MPEC問(wèn)題轉(zhuǎn)化為帶有投影函數(shù)的單層優(yōu)化問(wèn)題。再利用光滑化手段將最后得到的單層優(yōu)化問(wèn)題轉(zhuǎn)化為光滑函數(shù)約束的優(yōu)化問(wèn)題,對(duì)其KKT系統(tǒng)構(gòu)造同倫方程,證明了同倫路徑的存在性和收斂性,并給出計(jì)算實(shí)例.
[Abstract]:Equilibrium constrained Programs with Equilibrium Constraints, (MPECs) is a constrained programming problem with parametric variational inequalities, complementary problems and generalized equations in the constraint set. This problem is widely used in the fields of mathematical economics, engineering design, chemical engineering, traffic science and so on, and is closely related to the variational inequality problems such as Nash equilibrium and complementarity problems. However, due to the fact that the feasible domain of the MPEC problem does not satisfy most of the constraint specifications, especially the M-F constraint specification, it is not satisfied at any point in the feasible domain, so it is very difficult for this kind of problem to be solved in theory and algorithm. In the past twenty years, great achievements have been made in the research of MPEC problem in theory and algorithm, but there are still many problems to be solved. In this paper, based on projection function and smoothing theory, we study several kinds of mathematical programming problems with equilibrium constraints and multi-objective optimization problems with equilibrium constraints by using combined homotopy algorithm. In this paper, the following results are obtained. 1. The mathematical programming problem with bounded box constrained variational inequalities is studied. First, the variational inequality valence in the problem is transformed into a nonsmooth equation with projection function. Then, based on the characteristics of box constraint set, a parameter equality constraint is constructed by using Cabriel-More smooth function to approximate the nonsmooth part of the equation. The homotopy equation is constructed for the KKT system of the transformed mathematical programming problem. This method does not need to assume that the function F has strong monotonicity, nor does it need to introduce additional variables, and it also facilitates the selection of initial points in subsequent calculations. Finally, the existence of homotopy path and the convergence of a wide range are proved. The feasibility and validity of the algorithm are verified by numerical experiments, and a homotopy algorithm for complementary constrained mathematical programming is established. Firstly, the mathematical programming problem with complementary constraints is transformed into a general nonlinear programming problem with nonsmooth function constraints. Then the nonsmooth equality constraints are transformed into the equality constraints of smooth functions by smoothing method. Thus, the above mathematical programming problem is transformed into a smooth function constrained mathematical programming problem, thus avoiding the introduction of more multiplier variables. The homotopy equation is constructed for the KKT system of the final smooth programming problem. The existence and convergence of the homotopy path are proved. It is also proved that the obtained KKT point is the C-stable point of the original problem. A numerical example is used to verify the feasibility and validity of the algorithm, and a new homotopy algorithm is constructed to solve the multi-objective optimization problem with equilibrium constraints. Firstly, the original problem is equivalent to a general multiobjective problem with KKT system by using SBCQ constraint specification, and the KKT system mentioned above is transformed into a smooth equality constraint, and then a multiobjective programming problem with equality and inequality constraints is obtained. Finally, the homotopy equation is constructed for the KKT system of the transformed equivalent problem, and the existence and convergence of the homotopy path are proved. Finally, the feasibility and validity of the proposed algorithm are proved by numerical experiments. Finally, the equilibrium constrained programming problem defined by variational inequalities on a general closed convex set is discussed. By introducing the concept of infinite solution, the solved MPEC problem is transformed into a single-layer optimization problem with projection function. Finally, by using smoothing method, the final single-layer optimization problem is transformed into an optimization problem with smooth function constraints. The homotopy equation is constructed for its KKT system, and the existence and convergence of homotopy path are proved, and an example is given.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O221
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周彥;鄧?yán)?;多值一般混合似變分不等式的可解性[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年06期
2 孫燕蘭;黃建華;;強(qiáng)向量F-隱補(bǔ)問(wèn)題及相應(yīng)的變分不等式[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期
3 J.L.Lions,郭友中;關(guān)于變分不等式及其應(yīng)用的若干問(wèn)題[J];數(shù)學(xué)進(jìn)展;1983年01期
4 史金松;;關(guān)于變分不等式及其應(yīng)用的述評(píng)[J];華水科技情報(bào);1984年04期
5 張石生,朱元國(guó);關(guān)于一類(lèi)隨機(jī)變分不等式和隨機(jī)擬變分不等式問(wèn)題[J];數(shù)學(xué)研究與評(píng)論;1989年03期
6 楊慶之;;關(guān)于參數(shù)變分不等式解的可計(jì)算界[J];河北師范大學(xué)學(xué)報(bào);1992年03期
7 張石生;變分不等式和相補(bǔ)問(wèn)題理論研究中的某些問(wèn)題及進(jìn)展[J];贛南師范學(xué)院學(xué)報(bào);1992年S1期
8 張石生;變分不等式和相補(bǔ)問(wèn)題理論研究中的某些問(wèn)題及進(jìn)展[J];贛南師范學(xué)院學(xué)報(bào);1992年S2期
9 何炳生;一類(lèi)廣義線(xiàn)性變分不等式的求解與應(yīng)用[J];中國(guó)科學(xué)(A輯 數(shù)學(xué) 物理學(xué) 天文學(xué) 技術(shù)科學(xué));1995年09期
10 李賢瑜,雷忠學(xué);半嚴(yán)格偽上強(qiáng)制映射及其在變分不等式中的應(yīng)用[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1995年03期
相關(guān)會(huì)議論文 前6條
1 李云翔;劉振海;;粘彈性壓電材料接觸問(wèn)題的H-半變分不等式方法[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
2 范麗亞;;抽象的集值混合變分不等式解的存在性(英文)[A];中國(guó)運(yùn)籌學(xué)會(huì)第七屆學(xué)術(shù)交流會(huì)論文集(上卷)[C];2004年
3 陳益峰;盧禮順;周創(chuàng)兵;戴躍華;;Signorini型變分不等式方法在實(shí)際工程滲流問(wèn)題中的應(yīng)用[A];第九屆全國(guó)巖土力學(xué)數(shù)值分析與解析方法討論會(huì)論文集[C];2007年
4 韓澤;方亞平;李竹渝;;一類(lèi)產(chǎn)生于廣義國(guó)際金融均衡問(wèn)題的變分不等式的迭代算法[A];面向復(fù)雜系統(tǒng)的管理理論與信息系統(tǒng)技術(shù)學(xué)術(shù)會(huì)議專(zhuān)輯[C];2000年
5 丁協(xié)平;夏福全;;Banach空間中廣義混合變分不等式解的存在性和算法[A];2001年全國(guó)數(shù)學(xué)規(guī)劃及運(yùn)籌研討會(huì)論文集[C];2001年
6 姚鋒敏;滕春賢;;Nash博弈、變分不等式,Stackelberg博弈及MPEC問(wèn)題的關(guān)系[A];第四屆全國(guó)決策科學(xué)/多目標(biāo)決策研討會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前10條
1 王學(xué)永;變分不等式與線(xiàn)性約束分離優(yōu)化問(wèn)題的若干算法研究[D];重慶大學(xué);2015年
2 寇喜鵬;結(jié)構(gòu)變分不等式與凸優(yōu)化問(wèn)題的若干算法研究[D];重慶大學(xué);2015年
3 邱洋青;變分不等式與非線(xiàn)性算子方程的逼近[D];上海師范大學(xué);2016年
4 張春陽(yáng);均衡約束優(yōu)化問(wèn)題的若干研究[D];吉林大學(xué);2016年
5 趙亞莉;廣義似變分不等式解的存在性和算法[D];大連理工大學(xué);2006年
6 陳爽;錐約束隨機(jī)變分不等式的求解及應(yīng)用[D];大連理工大學(xué);2014年
7 李云翔;H-半變分不等式及其在接觸力學(xué)中的應(yīng)用[D];中南大學(xué);2011年
8 胡夢(mèng)瑜;廣義變分不等式理論及其若干問(wèn)題[D];上海師范大學(xué);2007年
9 黃玲玲;變分不等式及其相關(guān)問(wèn)題的算法研究[D];西安電子科技大學(xué);2012年
10 王亞琴;廣義變分不等式的若干類(lèi)算法[D];上海師范大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 高玉立;一類(lèi)隨機(jī)變分不等式的抽樣平均近似方法[D];大連理工大學(xué);2009年
2 郝妍;擬似變分不等式及擬似變分不等式組解的靈敏性分析[D];遼寧師范大學(xué);2006年
3 邢翠;結(jié)構(gòu)型隨機(jī)變分不等式的準(zhǔn)蒙特卡洛方法[D];遼寧工程技術(shù)大學(xué);2011年
4 楊杰;一類(lèi)廣義凸映射及其優(yōu)化問(wèn)題的研究[D];集美大學(xué);2015年
5 郭智源;求解強(qiáng)制單調(diào)變分不等式的算法比較[D];南京大學(xué);2014年
6 呂麗霞;一類(lèi)可分離帶線(xiàn)性約束的變分不等式及應(yīng)用研究[D];南京財(cái)經(jīng)大學(xué);2014年
7 王超;廣義向量似變分不等式解的存在性及穩(wěn)定性[D];渤海大學(xué);2016年
8 烏云高;一類(lèi)變分不等式和變分包含問(wèn)題解的存在性研究[D];內(nèi)蒙古大學(xué);2008年
9 張哲;基于變分不等式的金融超網(wǎng)絡(luò)研究[D];大連海事大學(xué);2010年
10 田慧瓊;不適定變分不等式的正則化方法[D];湖南師范大學(xué);2009年
,本文編號(hào):1972822
本文鏈接:http://sikaile.net/kejilunwen/yysx/1972822.html