基于隨機分塊模型的結(jié)構(gòu)腦網(wǎng)絡(luò)連接優(yōu)化
發(fā)布時間:2018-05-28 22:52
本文選題:結(jié)構(gòu)腦網(wǎng)絡(luò) + 標記神經(jīng)元比例 ; 參考:《計算機工程與設(shè)計》2017年08期
【摘要】:針對傳統(tǒng)的結(jié)構(gòu)腦網(wǎng)絡(luò)構(gòu)建以及分析方法缺乏對網(wǎng)絡(luò)中連接的可信程度的驗證,且在現(xiàn)有的研究中對結(jié)構(gòu)腦網(wǎng)絡(luò)進行優(yōu)化的方法存在缺陷,介紹一種基于隨機分塊模型的算法,對結(jié)構(gòu)腦網(wǎng)絡(luò)中的連接可靠性進行量化評價,作為基礎(chǔ)對網(wǎng)絡(luò)結(jié)構(gòu)進行優(yōu)化。利用網(wǎng)絡(luò)中節(jié)點間的模塊化結(jié)構(gòu),以及節(jié)點間是否存在連接依賴于節(jié)點在網(wǎng)絡(luò)中起到的作用這兩個屬性,將節(jié)點分為模塊,迭代多次,直到節(jié)點發(fā)揮其最大作用為止。通過與真實網(wǎng)絡(luò)相比較,驗證該方法是否可以應(yīng)用在結(jié)構(gòu)腦網(wǎng)絡(luò)。結(jié)果表明,在不同的網(wǎng)絡(luò)稀疏度情況下,使用該算法優(yōu)化后的網(wǎng)絡(luò)的正確邊的比率,均遠高于原有的方法說明該方法對結(jié)構(gòu)腦網(wǎng)絡(luò)的優(yōu)化有顯著效果。
[Abstract]:In view of the fact that the traditional methods of structural-brain network construction and analysis lack the verification of the credibility of the connections in the network, and the shortcomings of the existing research methods of optimizing the structural brain network, an algorithm based on random block model is introduced. The connection reliability of structural brain network is evaluated quantitatively, and the network structure is optimized based on it. Using the modularization structure between nodes and whether there is a connection between nodes depending on the role of nodes in the network, the nodes are divided into modules and iterated many times until the nodes play their most important role. Compared with the real network, the proposed method can be applied to the structural brain network. The results show that under different network sparsity, the ratio of the correct edges of the optimized network using this algorithm is much higher than that of the original method, which shows that the method has a significant effect on the optimization of the structural brain network.
【作者單位】: 太原理工大學(xué)計算機科學(xué)與技術(shù)學(xué)院;
【基金】:國家自然科學(xué)基金項目(61373101、61472270、61402318) 教育部高等學(xué)校博士學(xué)科點專項科研基金項目(20131402110006) 太原理工大學(xué)青年基金項目(2012L014、2013T047)
【分類號】:O157.5;R318
【相似文獻】
相關(guān)期刊論文 前10條
1 段文娟,李艷紅;分塊混料模型[J];丹東紡專學(xué)報;2000年01期
2 姚敬之;吳旭光;;微型機上大型線性方程組的改進分塊解法[J];河海大學(xué)學(xué)報;1987年06期
3 蔣思杰;;有限元法的分塊解題法通用過程[J];上海交通大學(xué)學(xué)報;1978年02期
4 羅家駿;;分段測量的簡化,
本文編號:1948498
本文鏈接:http://sikaile.net/kejilunwen/yysx/1948498.html
最近更新
教材專著