非線性三階三點邊值問題系統(tǒng)正解的存在性及多解性
發(fā)布時間:2018-05-23 22:06
本文選題:系統(tǒng) + 邊值問題。 參考:《蘭州理工大學》2017年碩士論文
【摘要】:三階微分方程在我們的生活中有著非常廣泛的應用,其中涉及到了應用數(shù)學和物理學的各種不同領(lǐng)域,例如,地球引力吹積的漲潮、三層梁、帶有固定或變化橫截面的屈曲梁的撓度、電磁波等.因而,更多的學者關(guān)注于三階微分方程多點邊值問題的研究,并獲得了非常豐富的研究結(jié)果.伴隨著人們更深入的研究與探討三階微分方程多點邊值問題,三階微分方程多點邊值問題系統(tǒng)也慢慢成為人們所熱衷研究的對象.本文討論了下述非線性三階三點微分方程邊值問題系統(tǒng)正解的存在性及多解性,其中0η≤?,0≤α1,f,g∈C([0,1]×[0,∞),[0,∞)),并且對于所有的t∈[0,1],都有f(t,0)≡0,g(t,0)≡0.所用的工具是不動點指數(shù)理論.
[Abstract]:Third order differential equations have a very wide range of applications in our lives, involving various fields of applied mathematics and physics, for example, the Earth's gravitational rising tide, the three-story beam, Deflection, electromagnetic waves, etc., of a buckled beam with a fixed or varying cross section. Therefore, more and more scholars pay attention to the multi-point boundary value problem of the third order differential equation, and obtain very rich research results. With the further study and discussion of the multipoint boundary value problem of the third order differential equation, the system of the multipoint boundary value problem of the third order differential equation has gradually become the object that people are keen to study. In this paper, we discuss the existence and multiplicity of positive solutions of the following nonlinear third-order three-point boundary value problem systems, where 0 畏 鈮,
本文編號:1926557
本文鏈接:http://sikaile.net/kejilunwen/yysx/1926557.html
最近更新
教材專著