天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

形式矩陣環(huán)上的模,映射和零因子圖的研究

發(fā)布時間:2018-05-14 05:31

  本文選題:形式矩陣環(huán) + ��; 參考:《廣西師范學院》2017年碩士論文


【摘要】:形式矩陣環(huán)是矩陣環(huán)的推廣,它在環(huán)論和模論中都起著重要的作用.眾所周知,每個具有非平凡冪等元的環(huán)都與一個形式矩陣環(huán)同構,每個可分解模的自同態(tài)環(huán)也與一個形式矩陣環(huán)同構.形式三角矩陣環(huán)是一類重要的形式矩陣環(huán),它在Artin代數(shù)的表示中起著重要作用.形式矩陣環(huán)具有豐富的性質和重要的應用,對環(huán)的研究具有重要意義.本文在前人的基礎上進一步研究了形式矩陣環(huán)上的模,映射和零因子圖.第一章介紹了本文的研究背景,研究意義,以及本文涉及到的一些基本概念和相關結論.第二章主要研究了形式矩陣環(huán)(?)上的artinian模,noetherian模和有限表現(xiàn)模.證明了任意右K -模(X,Y)f,g是右artinian (noetherian)模當且僅當右R-模X和右S -模Y是artinian (noetherian)模.給出了形式矩陣環(huán)K上的模是有限表現(xiàn)模的充分條件.此外還研究了任意右K-模的多余滿同態(tài),證明了任意右K -模(X,Y)f,g有投射覆蓋當且僅當R-模X / YN和S -模Y/XM有投射覆蓋.第三章主要研究了具有零跡理想的形式矩陣環(huán)的環(huán)同態(tài),σ-導子,σ-雙導子和σ-交換映射.證明了在一定條件下σ-雙導子是外σ-雙導子與內σ-雙導子的和并得到了σ-雙導子是內σ-雙導子的充分條件.給出形式矩陣環(huán)上的σ-交換映射的具體形式,得出了σ-交換映射是真的σ-交換映射的一些等價刻畫并給出σ-交換映射是真的σ -交換映射的一個充分條件.第四章主要研究了交換環(huán)上的n階形式矩陣環(huán)的零因子及零因子圖的性質.引入了環(huán)上左(右)形式線性方程組的概念,并用其證明了M_n(R;S_(ijk)})的元素A是零因子當且僅當它的行列式是R的零因子當且僅當A是R[A]的零因子.刻畫了交換環(huán)R上的形式矩陣環(huán)M_n(R;{S_(ijk)})的無向零因子圖Γ(M_n(R;{S_(ijk)}))和有向零因子圖Γ(M_n(R;{S_(ijk)})).證得Γ(M_n(R;{S_(ijk)}))是非平面圖,圍長都是3,直徑只能是2或3.還證明了有向零因子圖Γ(M_n(R;{S_(ijk)}))的直徑也只能是2或3且Γ(M_n(R;{S_(ijk)}))(?)Γ(M_n(T(R);{S_(ijk)})),其中T(R)是交換環(huán)R的全商環(huán),
[Abstract]:Formal matrix ring is a generalization of matrix ring, which plays an important role in ring theory and module theory. It is well known that every ring with nontrivial idempotent elements is isomorphic to a formal matrix ring, and each endomorphism ring of decomposable modules is also isomorphic to a formal matrix ring. Formal triangular matrix ring is an important class of formal matrix ring, which plays an important role in the representation of Artin algebra. Formal matrix rings have rich properties and important applications, which is of great significance to the study of rings. In this paper, we further study the modules, mappings and zero digraphs over formal matrix rings on the basis of previous studies. The first chapter introduces the research background, research significance, and some basic concepts and related conclusions. In the second chapter, we mainly study the formal matrix ring. Artinian modules and finite representation modules. In this paper, we prove that any right K-module X _ T _ y _ F _ G is a right artinian not etherian) module if and only if the right R-module X and the right S-module Y are artinian noetherian) modules. The sufficient conditions under which the modules over the formal matrix ring K are finite representation modules are given. In addition, the superfluous full homomorphisms of any right K-module are studied, and it is proved that any right K-module X ~ (+) y ~ (+) F _ (G) has projective covering if and only if the R _ (-) -module X / YN and S-module Y/XM have projective covers. In chapter 3, we study the ring homomorphism, 蟽 -derivation, 蟽 -biderivation and 蟽 -commutative mapping of formal matrix rings with zero trace ideals. It is proved that 蟽 -biderivation is the sum of outer 蟽 -biderivation and inner 蟽 -biderivation under certain conditions, and the sufficient condition that 蟽 -biderivation is internal 蟽 -biderivation is obtained. This paper gives the concrete form of 蟽 -commutative mappings over formal matrix rings, obtains some equivalent characterizations that 蟽 -commutative mappings are true 蟽 -commutative mappings, and gives a sufficient condition that 蟽 -commutative mappings are true 蟽 -commutative mappings. In chapter 4, we study the properties of zero divisor and zero digraph of n order formal matrix rings over commutative rings. In this paper, the concept of left (right) form linear equations over rings is introduced, by which it is proved that the element A of M _ nn / R _ T _ S _ I _ j _ k}) is zero if and only if its determinant is the zero factor of R if and only if A is the zero factor of R [A]. In this paper, we describe the undirected zero-divisor graph 螕 / M _ nn _ (R) and directed zero _ factor graph 螕 ~ (M ~ n ~ r; {S _ S _ T _ I _ j _ k)} over a commutative ring R. ({S _ S _ T _ I _ j _ k}) and a directed zero _ factor graph 螕 ~ (?) ~ M _ n _ n ~ r; {S _ S _ S _ I _ j _ k}. The results show that 螕 / M / M / M / T ({S / S / T _ I _ j _ k)} is a displanar graph with a girth of 3 and a diameter of only 2 or 3. It has also been proved that the directed zero-factor graph 螕 / S / T / M / T / R; {S / S / S / T _ j _ k}) can only be 2 or 3 in diameter and 螕 / C / M / M / N / R; {S / S / S / S / T _ k} / T / S / S / S / S / S / S / S / T / T / S / S / S / S / S / T / T / T / T / T / T) and that the T _ T _ R) is the total quotient ring of the exchange ring R.
【學位授予單位】:廣西師范學院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O153.3

【參考文獻】

相關期刊論文 前4條

1 唐高華;崔春強;曾慶雨;張恒斌;;形式矩陣環(huán)的零因子(英文)[J];廣西師范學院學報(自然科學版);2014年01期

2 Zi Qiang FAN;Zhi Xiang YIN;;On K_2-group of a Formal Matrix Ring[J];Acta Mathematica Sinica;2012年09期

3 余維燕;張建華;;套代數(shù)上的σ-雙導子和σ-可交換映射[J];數(shù)學學報;2007年06期

4 張小向,陳建龍;Morita系統(tǒng)環(huán)上的自由模[J];東南大學學報(自然科學版);2001年05期

,

本文編號:1886579

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/1886579.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶7927a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
开心激情网 激情五月天| 亚洲熟女一区二区三四区| 在线日本不卡一区二区| 免费观看在线午夜视频| 夫妻激情视频一区二区三区| 国产女同精品一区二区| 国产欧美日韩精品成人专区| 久热久热精品视频在线观看| 国产丝袜女优一区二区三区| 欧美日韩成人在线一区| 国产精品99一区二区三区| 亚洲天堂男人在线观看| 高清在线精品一区二区| 老司机精品线观看86| 青青草草免费在线视频| 激情五月天深爱丁香婷婷| 国产精品一区欧美二区| 精品人妻久久一品二品三品 | 激情偷拍一区二区三区视频| 四季精品人妻av一区二区三区| 欧美日韩国产综合特黄| 可以在线看的欧美黄片| 激情爱爱一区二区三区| 人妻一区二区三区多毛女| 69老司机精品视频在线观看| 国产精品一区二区成人在线| 日本一品道在线免费观看| 日韩成人动画在线观看| 国产精品亚洲综合色区韩国| 亚洲一区二区三在线播放| 尹人大香蕉一级片免费看| 国产精品午夜福利免费在线| 少妇在线一区二区三区| 青青久久亚洲婷婷中文网| 好东西一起分享老鸭窝| 四季av一区二区播放| 日韩美成人免费在线视频| 麻豆蜜桃星空传媒在线观看| 亚洲熟妇中文字幕五十路| 欧美午夜性刺激在线观看| 高清一区二区三区大伊香蕉|