天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

帶軟約束的模糊二次規(guī)劃問題研究

發(fā)布時間:2018-04-26 16:49

  本文選題:模糊二次規(guī)劃 + 二次隸屬函數(shù)。 參考:《廣州大學(xué)》2017年碩士論文


【摘要】:帶軟約束的模糊二次規(guī)劃問題,由一個二次目標(biāo)函數(shù)和若干線性約束條件在模糊環(huán)境中組合而成。求解方法需要先將模糊約束轉(zhuǎn)化為隸屬度形式,此處通常采用線性隸屬函數(shù)描述?紤]到線性函數(shù)形式單一,無法充分保證決策者的意愿。若改用非線性函數(shù)描述其滿意度,又會增加處理的難度?梢,尋找一類既能最大限度地保留決策者意愿,又能輕松求解的隸屬函數(shù)具有相當(dāng)?shù)默F(xiàn)實(shí)意義。采用可調(diào)節(jié)二次隸屬函數(shù)可以做到這一點(diǎn)。為此,論文主要針對帶軟約束的模糊二次規(guī)劃問題,改用二次隸屬函數(shù)或者正態(tài)隸屬函數(shù)刻畫模糊約束的滿意度,分別建立了兩種含不同隸屬函數(shù)的模糊二次規(guī)劃模型。由于正態(tài)函數(shù)在表達(dá)形式上的復(fù)雜性,進(jìn)一步提出用二次函數(shù)在關(guān)鍵點(diǎn)處近似替代正態(tài)函數(shù),從而簡化了含正態(tài)隸屬函數(shù)模型的求解。論文的主要內(nèi)容包括:1、針對帶軟約束的模糊二次規(guī)劃問題,以總結(jié)幾種基于線性隸屬函數(shù)的求解方法為依托,分析和探討模型的其它解法。2、提出了一類可調(diào)節(jié)二次隸屬函數(shù)供決策者選擇,建立了含二次隸屬函數(shù)的模糊二次規(guī)劃模型,比較了擴(kuò)展線性方法和參數(shù)規(guī)劃法兩類求解方法,從中找出一些規(guī)律性的東西。3、基于正態(tài)函數(shù)建構(gòu)含正態(tài)隸屬函數(shù)的模糊二次規(guī)劃模型,研究用二次函數(shù)在關(guān)鍵點(diǎn)處近似替代正態(tài)函數(shù)來簡化模型的求解問題,討論替換前后最優(yōu)解的變化情況。4、通過簡單實(shí)例,給出了目標(biāo)函數(shù)的等值線為圓形和拋物形兩類簡單的模糊二次規(guī)劃的圖解法,獲得了較滿意的結(jié)果。論文所用的方法優(yōu)勢在于,二次隸屬函數(shù)與該模型的目標(biāo)函數(shù)在表達(dá)形式上相一致。函數(shù)的形態(tài)可以隨意調(diào)節(jié),避免了采用其它非線性隸屬函數(shù)對求解的影響。該方法續(xù)寫了模糊二次規(guī)劃的內(nèi)容,也為決策者解決模糊環(huán)境下的規(guī)劃問題,提供了更豐富的途徑。
[Abstract]:The fuzzy quadratic programming problem with soft constraints is composed of a quadratic objective function and some linear constraints in a fuzzy environment. It is necessary to transform fuzzy constraint into membership form, which is usually described by linear membership function. Considering the single form of linear function, the will of decision maker can not be fully guaranteed. If the nonlinear function is used to describe its satisfaction, it will increase the difficulty of processing. Therefore, it is of practical significance to find a kind of membership function which can not only retain the will of the decision maker to the maximum extent, but also solve the membership function easily. This can be achieved by using adjustable quadratic membership function. To solve the problem of fuzzy quadratic programming with soft constraints, this paper uses quadratic membership function or normal membership function to describe the satisfaction of fuzzy constraints, and establishes two fuzzy quadratic programming models with different membership functions. Due to the complexity of normal function in expression form, it is further proposed that the quadratic function be used to approximate the normal function at the key point, thus simplifying the solution of the model of membership function containing normal state. The main contents of this paper include: 1. Aiming at the fuzzy quadratic programming problem with soft constraints, we summarize several solving methods based on linear membership function. Based on the analysis and discussion of other solutions of the model, a class of adjustable quadratic membership function is proposed for decision makers to choose. A fuzzy quadratic programming model with quadratic membership function is established. The extended linear method and parametric programming method are compared. Based on the normal function, the fuzzy quadratic programming model with normal membership function is constructed, and the problem of solving the model is simplified by using quadratic function to approximate replace normal function at the key point. The variation of the optimal solution before and after substitution is discussed. By a simple example, the graphic method of two simple fuzzy quadratic programming, which the objective function is circular and parabolic, is given, and the satisfactory results are obtained. The advantage of the method is that the quadratic membership function is consistent with the objective function of the model. The shape of the function can be adjusted at will to avoid the influence of other nonlinear membership functions on the solution. The method extends the content of fuzzy quadratic programming and provides a more abundant way for decision makers to solve the planning problem in fuzzy environment.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O221

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 盧樹泉;曹炳元;;含二次隸屬函數(shù)的模糊二次規(guī)劃模型求解[J];湖南文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年03期

2 譚俊;陳建玲;蘇江波;;求解非線性約束優(yōu)化問題的精確罰函數(shù)方法[J];赤峰學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年13期

3 楊蘭蘭;曹炳元;;關(guān)于Werner對稱模糊二次規(guī)劃的求解[J];湖南文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年01期

4 席永勝;劉振娟;李宏光;;基于靈敏性分析的模糊非線性規(guī)劃方法[J];系統(tǒng)工程理論與實(shí)踐;2014年09期

5 馬小華;魏飛;高岳林;;帶有二次約束二次規(guī)劃問題的全局最優(yōu)化[J];蘭州理工大學(xué)學(xué)報(bào);2013年03期

6 聞博;李宏光;;非線性模糊規(guī)劃中分段線性隸屬函數(shù)的構(gòu)造方法[J];化工學(xué)報(bào);2011年08期

7 李國權(quán);吳至友;;帶有二次約束的一些非凸二次規(guī)劃問題的全局最優(yōu)性條件[J];重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期

8 張成,楊萬才;模糊規(guī)劃的對偶理論[J];遼寧師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期

9 聶普焱;一種內(nèi)點(diǎn)法解二次規(guī)劃[J];應(yīng)用數(shù)學(xué);2003年02期

10 陳忠,費(fèi)浦生;求解凸規(guī)劃問題的改進(jìn)擬牛頓法[J];廣西師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2003年01期

,

本文編號:1806837

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/1806837.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶05e86***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com