非線性算子不動點及分裂可行問題解的迭代逼近
本文選題:Ishikawa型算法 + Mann型算法; 參考:《上海師范大學(xué)》2017年博士論文
【摘要】:本學(xué)位論文在無限維實Hilbert空間或Banach空間框架下研究了變分不等式問題、非線性算子不動點問題及分裂可行性問題.為了解決這些問題,本文利用投影算子技巧、半閉原理等工具改進了之前文獻中的外梯度方法、投影收縮方法、阻尼方法、混合方法、粘性迭代方法,并證明了修正算法的收斂性.其結(jié)果改進、推廣與補充了之前文獻中的相應(yīng)結(jié)果.全文共分六章.第一章,介紹了分裂可行問題的研究背景與現(xiàn)狀,并簡述了本文的主要工作與結(jié)構(gòu)安排.第二章,回顧了文中將要用到的一些基本概念和預(yù)備知識.第三章,研究涉及偽壓縮映象的分裂可行問題與不動點問題.在Hilbert空間中,研究外梯度方法,用以解決涉及偽壓縮映象的分裂可行問題與不動點問題.我們構(gòu)造一個Ishikawa型外梯度算法來逼近涉及Lipschitz偽壓縮映象的分裂可行問題與不動點問題之公共解,進一步,我們也構(gòu)造了一個Mann型外梯度算法來逼近涉及非Lipschitz偽壓縮映象的分裂可行問題與不動點問題之公共解.在一定條件下,我們證得,由構(gòu)造的算法產(chǎn)生的序列弱收斂于分裂可行問題與不動點問題的公共解.本章得到的結(jié)果推廣和改進了一些文獻中相應(yīng)的結(jié)果.數(shù)值試驗說明了理論結(jié)果的可行性.第四章,在p-一致凸、一致光滑實Banach空間框架下,通過對Bregman擬嚴格偽壓縮映象定義以及混合投影的研究,構(gòu)造新的混合投影算法,用來逼近Banach空間中分裂可行問題與不動點問題的解.并證明了所構(gòu)造的算法產(chǎn)生的序列強收斂于分裂可行問題與不動點問題的公共解.本章得到的結(jié)果推廣和改進了一些文獻中相應(yīng)的結(jié)果.數(shù)值試驗說明了理論結(jié)果的可行性.第五章,本章主要目的是研究尋求鄰近分裂可行問題、不動點問題及變分不等式問題之公共解的收縮投影方法.我們借助收縮投影技巧,構(gòu)造恰當?shù)牡惴ㄈケ平徑至芽尚袉栴}、不動點問題及變分不等式問題的公共解,并證明了所構(gòu)造算法的強收斂性.第六章,本章主要目的是研究鄰近分裂可行問題的范數(shù)最小解,我們證得,在Hilbert空間中由構(gòu)造的算法生成的序列強收斂于鄰近分裂可行問題的范數(shù)最小解.本章得到的結(jié)果推廣和改進了一些文獻中相應(yīng)的結(jié)果.數(shù)值試驗說明了理論結(jié)果的可行性.
[Abstract]:In this paper, we study the variational inequality problem, the fixed point problem of nonlinear operator and the splitting feasibility problem under the frame of infinite dimensional real Hilbert space or Banach space. In order to solve these problems, this paper improves the external gradient method, projection contraction method, damping method, hybrid method, viscous iteration method and so on by means of projection operator technique and semi-closed principle. The convergence of the modified algorithm is proved. The results are improved to extend and supplement the corresponding results in previous literatures. The full text is divided into six chapters. In the first chapter, the research background and present situation of splitting feasible problem are introduced, and the main work and structure arrangement of this paper are briefly described. In the second chapter, we review some basic concepts and preliminary knowledge that will be used in this paper. In chapter 3, the splitting feasible problem and fixed point problem of pseudo contractive mappings are studied. In Hilbert space, the external gradient method is studied to solve the splitting feasible problem and fixed point problem involving pseudo contractive mappings. We construct an Ishikawa type external gradient algorithm to approximate the common solutions of split feasible problems and fixed point problems involving Lipschitz pseudo contractive mappings. We also construct an Mann type external gradient algorithm to approximate the common solutions of split feasible problems and fixed point problems involving non- pseudo contractive mappings. Under certain conditions, we prove that the sequence generated by the constructed algorithm converges weakly to the common solutions of split feasible problems and fixed point problems. The results obtained in this chapter extend and improve the corresponding results in some literatures. Numerical experiments show the feasibility of the theoretical results. In chapter 4, under the framework of p-uniformly convex and uniformly smooth real Banach spaces, a new hybrid projection algorithm is constructed by studying the definition of Bregman quasi-strictly pseudo-contractive mappings and the mixed projection. It is used to approximate the solutions of split feasible problem and fixed point problem in Banach space. It is proved that the sequence generated by the proposed algorithm converges strongly to the common solutions of split feasible problems and fixed point problems. The results obtained in this chapter extend and improve the corresponding results in some literatures. Numerical experiments show the feasibility of the theoretical results. In chapter 5, the main purpose of this chapter is to study the constrictive projection method for finding common solutions of adjacent splitting problems, fixed point problems and variational inequality problems. By means of the technique of contraction projection, we construct an appropriate iterative algorithm to approximate the common solutions of the adjacent splitting feasible problem, fixed point problem and variational inequality problem, and prove the strong convergence of the constructed algorithm. In chapter 6, the main purpose of this chapter is to study the norm minimum solution of the adjacent splitting feasible problem. We prove that the sequence generated by the constructed algorithm converges strongly to the norm minimum solution of the adjacent splitting feasible problem in Hilbert space. The results obtained in this chapter extend and improve the corresponding results in some literatures. Numerical experiments show the feasibility of the theoretical results.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O177.91
【相似文獻】
相關(guān)期刊論文 前10條
1 孫永平;關(guān)于不動點問題的一些結(jié)果[J];麗水師專學(xué)報;1988年S1期
2 俞建;良定不動點問題[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2001年04期
3 王娟,董樹權(quán);關(guān)于不動點的幾個命題[J];長春師范學(xué)院學(xué)報;2002年05期
4 劉曉玲;求“不動點”問題[J];邯鄲師專學(xué)報;2003年03期
5 劉益波;高維;;考慮有限理性的良定不動點問題研究[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2011年01期
6 蘇孟龍;劉麥學(xué);;內(nèi)點同倫方法求解更一般非凸集上的不動點問題(英文)[J];數(shù)學(xué)季刊;2012年01期
7 蔡志丹;常水珍;韓月才;;路徑跟蹤方法求解無界非凸區(qū)域上的不動點問題[J];數(shù)學(xué)的實踐與認識;2012年05期
8 張秀之,陳生;一類非線性映射的不動點的逼近[J];南昌大學(xué)學(xué)報(理科版);1982年01期
9 趙曉全;;乘積空間中映射的不動點[J];哈爾濱電工學(xué)院學(xué)報;1985年02期
10 卞莉山;一類未解決的非線性映射的不動點問題[J];湖北大學(xué)學(xué)報(自然科學(xué)版);1986年02期
相關(guān)會議論文 前1條
1 郭秀敏;王國俊;;關(guān)于描述邏輯中不動點語義的討論[A];第六屆中國不確定系統(tǒng)年會論文集[C];2008年
相關(guān)博士學(xué)位論文 前4條
1 馬倩;MSVL語言的約束求解與形式驗證[D];西安電子科技大學(xué);2015年
2 陳進作;非線性算子不動點及分裂可行問題解的迭代逼近[D];上海師范大學(xué);2017年
3 龍瓏;廣義量子操作不動點問題的研究[D];浙江大學(xué);2011年
4 胡慧英;幾類廣義平衡問題的不動點迭代法[D];上海師范大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉超;關(guān)于不動點問題的研究[D];天津理工大學(xué);2015年
2 馬苑芳;分裂等式不動點問題的研究及應(yīng)用[D];云南財經(jīng)大學(xué);2015年
3 馬越;廣義混合均衡問題與分裂不動點問題的收斂性定理[D];福州大學(xué);2013年
4 嚴小芳;關(guān)于幾類隨機算子問題的研究[D];南昌大學(xué);2016年
5 孫媛媛;分裂等式不動點問題的迭代算法[D];渤海大學(xué);2017年
6 李卓識;不動點問題的組合同倫算法與復(fù)雜性分析[D];長春工業(yè)大學(xué);2010年
7 劉斌斌;兩類非線性算子的不動點與固有值問題[D];江西師范大學(xué);2004年
8 羅率兵;抽象空間中的不動點問題[D];中國科學(xué)技術(shù)大學(xué);2009年
9 王燕;平衡問題的求解算法初探[D];重慶師范大學(xué);2009年
10 王云亮;平衡問題的例外簇[D];廣西師范大學(xué);2012年
,本文編號:1805463
本文鏈接:http://sikaile.net/kejilunwen/yysx/1805463.html