求解時(shí)變線性不等式離散算法的設(shè)計(jì)與分析
發(fā)布時(shí)間:2018-04-21 15:48
本文選題:線性不等式 + 時(shí)變; 參考:《華僑大學(xué)學(xué)報(bào)(自然科學(xué)版)》2017年05期
【摘要】:提出一種用于求解時(shí)變線性不等式的數(shù)值算法.通過引入一個(gè)時(shí)變向量(其每個(gè)元素都大于或等于零),將時(shí)變線性不等式轉(zhuǎn)化為一個(gè)時(shí)變矩陣向量方程,并給出用于求解該方程的連續(xù)時(shí)間模型(即神經(jīng)網(wǎng)絡(luò)).采用歐拉差分公式將其離散化,推導(dǎo)得到相應(yīng)的離散算法,并通過理論分析和數(shù)值實(shí)驗(yàn)驗(yàn)證該離散算法的有效性.結(jié)果表明:所提出的離散算法的穩(wěn)態(tài)誤差(SSRE)具有O(τ~2)的變化規(guī)律,當(dāng)τ的數(shù)值減小10倍,算法的穩(wěn)態(tài)誤差可減小100倍.
[Abstract]:A numerical algorithm for solving time-varying linear inequalities is proposed. By introducing a time-varying vector (each element is greater than or equal to zero), the time-varying linear inequality is transformed into a time-varying matrix vector equation, and a continuous time model (i.e. neural network) is given to solve the equation. The Euler difference formula is used to discretize it and the corresponding discrete algorithm is derived. The validity of the algorithm is verified by theoretical analysis and numerical experiments. The results show that the steady-state error (SSRE) of the proposed discrete algorithm has the law of O (蟿 ~ 2). When 蟿 value is reduced by 10 times, the steady-state error of the algorithm can be reduced by 100 times.
【作者單位】: 華僑大學(xué)信息科學(xué)與工程學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(61603143) 福建省自然科學(xué)基金資助項(xiàng)目(2016J01307) 華僑大學(xué)中青年教師科技創(chuàng)新計(jì)劃資助項(xiàng)目(ZQN-YX402);華僑大學(xué)高層次人才科研啟動(dòng)項(xiàng)目(15BS410)
【分類號(hào)】:O241
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 李美娟;自控系統(tǒng)中干擾信號(hào)產(chǎn)生的穩(wěn)態(tài)誤差的分析與教學(xué)處理[J];沈陽電力高等?茖W(xué)校學(xué)報(bào);2003年01期
相關(guān)會(huì)議論文 前1條
1 喻鐵軍;戴冠中;;具有最小穩(wěn)態(tài)誤差的最優(yōu)控制系統(tǒng)設(shè)計(jì)[A];1991年控制理論及其應(yīng)用年會(huì)論文集(上)[C];1991年
,本文編號(hào):1783081
本文鏈接:http://sikaile.net/kejilunwen/yysx/1783081.html
最近更新
教材專著