N-矩陣逆的無窮范數(shù)上界的新估計式
本文選題:N-矩陣 + H-矩陣; 參考:《云南大學(xué)》2015年碩士論文
【摘要】:N-矩陣是H-矩陣的重要子類之一,在數(shù)值計算、物理、電力控制理論和工程數(shù)學(xué)等許多方面都有著重要的應(yīng)用.本文研究N-矩陣的逆矩陣的無窮范數(shù)的估計問題,給出了N-矩陣的逆矩陣的無窮范數(shù)的幾個新的估計式,該估計式含有可調(diào)節(jié)參數(shù)μ.當(dāng)選取適當(dāng)?shù)膮?shù)μ時,本文的結(jié)果優(yōu)于[L.Cvetkovic et al. Infinity norm bounds for the inverse of Nekrasov matrices, Applied Mathematics and Computation,219(2013),5020-5024].的結(jié)果.此外,文中數(shù)值例子表明本文結(jié)果在某些情況下優(yōu)于[L. Cvetkovic, V. Kostic, K. Doroslovacki, Max-norm bounds for the inverse of S-Nekrasov matrices, Applied Mathematics and Computation,218(2012)9498-9503]的結(jié)果.
[Abstract]:N- matrix is one of the important subclasses of H- matrix. It has important applications in many fields, such as numerical calculation, physics, power control theory and engineering mathematics.In this paper, we study the estimation of infinite norm of inverse matrix of N-matrix, and give some new estimators of infinite norm of inverse matrix of N-matrix, which contain adjustable parameter 渭.When the appropriate parameter 渭 is selected, the result of this paper is better than that of [L.Cvetkovic et al.].Infinity norm bounds for the inverse of Nekrasov matrices, Applied Mathematics and Computation n. 21919 / 2013 / 5020-5024].The results ofIn addition, numerical examples show that the results obtained in this paper are superior to those of [L. Cvetkovic, V. Kostick, K. Doroslovacki, Max-norm bounds for the inverse of S-Nekrasov matrices, Applied Mathematics and Computationo 218 / 201 9498-9503].
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O151.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫玉祥;非奇異H矩陣的判定[J];工程數(shù)學(xué)學(xué)報;2000年04期
2 庹清;;非奇異H-矩陣判定的新條件[J];工程數(shù)學(xué)學(xué)報;2008年04期
3 莫宏敏;劉建州;;非奇異H-矩陣的新判據(jù)[J];高等學(xué)校計算數(shù)學(xué)學(xué)報;2007年04期
4 白中治,王德人;GENERALIZED MATRIX MULTISPLITTING RELAXATION METHODS AND THEIR CONVERGENCE[J];Numerical Mathematics A Journal of Chinese Universities(English Series);1993年01期
5 胡家贛;||B~(-1)A||的估計及其應(yīng)用[J];計算數(shù)學(xué);1982年03期
6 胡家贛;尺度變換和矩陣分解的收斂性[J];計算數(shù)學(xué);1983年01期
7 黃廷祝;非奇H矩陣的簡捷判據(jù)[J];計算數(shù)學(xué);1993年03期
8 干泰彬,黃廷祝;非奇異H矩陣的實用充分條件[J];計算數(shù)學(xué);2004年01期
9 庹清;朱礫;劉建州;;一類非奇異H-矩陣判定的新條件[J];計算數(shù)學(xué);2008年02期
10 逄明賢;廣義對角占優(yōu)矩陣的判定及應(yīng)用[J];數(shù)學(xué)年刊A輯(中文版);1985年03期
,本文編號:1772186
本文鏈接:http://sikaile.net/kejilunwen/yysx/1772186.html