兩個(gè)關(guān)于相依風(fēng)險(xiǎn)的問題
本文選題:共單調(diào) + 乘積矩 ; 參考:《曲阜師范大學(xué)》2015年碩士論文
【摘要】:近年來,獨(dú)立風(fēng)險(xiǎn)的理論體系基本得到了完善,相依風(fēng)險(xiǎn)問題的研究在風(fēng)險(xiǎn)理論領(lǐng)域備受關(guān)注.在實(shí)際的生產(chǎn)生活中,我們必然會遇到風(fēng)險(xiǎn)相依的情況,因此測量風(fēng)險(xiǎn)、了解風(fēng)險(xiǎn)相依對破產(chǎn)概率的影響等問題具有非常重要的現(xiàn)實(shí)意義.本文考慮了兩個(gè)關(guān)于相依風(fēng)險(xiǎn)的問題,一個(gè)是風(fēng)險(xiǎn)向量相依程度的測度,一個(gè)是索賠額和索賠來到的計(jì)數(shù)過程均相依情況下的破產(chǎn)概率的序問題.問題的解決用到了copula函數(shù),共單調(diào)理論,超模序等工具.根據(jù)文章的具體內(nèi)容,本文可分為以下兩章:(1)一個(gè)基于共單調(diào)的新的多元相依測度.在這一章我們通過乘積矩的方法定義了一個(gè)基于共單調(diào)的多元相依測度,它是Koch和Schepper(ASTIN Bulletin,2011,41:191-213)以及Dhaene等(Journal of Computational and Applied Mathematics,2014,263:78-87)兩篇文章改進(jìn)的結(jié)果,具有較好的性質(zhì),例如它滿足正則性、單調(diào)性、排列不變性以及對偶性.通過幾個(gè)例子,我們對新測度與現(xiàn)有測度做了一下比較.當(dāng)隨機(jī)向量是二維時(shí),新測度與已有測度相同,而當(dāng)維數(shù)高于二維時(shí),新測度又不同于已有的測度.最后,我們也給出了新測度的估計(jì).(2)多維風(fēng)險(xiǎn)模型破產(chǎn)概率序的研究.本章我們研究了在索賠額與索賠來到過程相依的情況下,破產(chǎn)概率的序問題.該結(jié)果推廣了Cai和Li(Journal of Multivariate Analysis,2007,98(4):757-773)的模型.在本章中,我們主要關(guān)注了三類常見的破產(chǎn)概率,并通過比較的方法證明了當(dāng)索賠額與索賠來到過程相依程度增加時(shí),一些破產(chǎn)概率如何增大,而另一些如何減小.另外,我們還根據(jù)共單調(diào)理論給出了各類破產(chǎn)概率的簡單界.在文章最后,我們提出可以用共單調(diào)理論處理帶布朗運(yùn)動干擾的多維風(fēng)險(xiǎn)模型的可能性,為下一步的研究提供了一種思路.
[Abstract]:In recent years, the theoretical system of independent risk has been basically improved, and the study of dependent risk has attracted much attention in the field of risk theory.In the actual production and life, we will inevitably encounter the situation of risk dependence, so it is of great practical significance to measure the risk and understand the impact of risk dependence on the ruin probability.In this paper, we consider two problems about dependent risk, one is the measure of dependency degree of risk vector, the other is the order of ruin probability when the amount of claim and the counting process of claim are both dependent.Copula function, co-monotone theory, supermodule ordering and other tools are used to solve the problem.According to the content of this paper, this paper can be divided into the following two chapters: 1) A new multivariate dependency measure based on co-monotone.In this chapter, we define a common-monotone multivariate dependent measure based on the method of product moments, which is an improved result of two articles, Koch and Schepper(ASTIN Bulletin 2011 41: 191-213) and Dhaene et al., of Computational and Applied Mathematicsn 201443: 78-87). For example, it satisfies the regularity.Monotonicity, permutation invariance, and duality.Through several examples, we compare the new measure with the existing measure.When the random vector is two dimensional, the new measure is the same as the existing measure, and when the dimension is higher than 2 D, the new measure is different from the existing measure.Finally, we also give the estimate of the new measure.In this chapter, we study the order of ruin probability when the amount of claim is dependent on the process of claim arrival.The results extend the model of Cai and Li(Journal of Multivariate Analysis (2007).In this chapter, we mainly focus on three kinds of common ruin probability, and prove how some ruin probability increases and others decrease when the amount of claim increases with the dependence of claim coming process.In addition, we also give some simple bounds of ruin probability based on the co-monotone theory.At the end of the paper, we propose the possibility of using the co-monotone theory to deal with the multi-dimensional risk model with Brownian motion disturbance, which provides a way of thinking for the next research.
【學(xué)位授予單位】:曲阜師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O211.67
【共引文獻(xiàn)】
相關(guān)期刊論文 前3條
1 王新武;;隨機(jī)變量和的數(shù)字特征[J];蘭州文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年03期
2 王正文;田玲;;基于共單調(diào)的財(cái)產(chǎn)保險(xiǎn)公司承保風(fēng)險(xiǎn)度量研究[J];管理科學(xué)學(xué)報(bào);2014年06期
3 盧志義;劉樂平;陳麗珍;;基于同單調(diào)理論的IBNR準(zhǔn)備金估計(jì)的隨機(jī)界[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2015年02期
相關(guān)碩士學(xué)位論文 前5條
1 李玉水;關(guān)于相依風(fēng)險(xiǎn)中多維聯(lián)合測度的研究[D];廈門大學(xué);2008年
2 王凱磊;多維相關(guān)風(fēng)險(xiǎn)模型的破產(chǎn)概率研究[D];河北工業(yè)大學(xué);2012年
3 唐先宇;資產(chǎn)組合風(fēng)險(xiǎn)測度可加性研究[D];吉林大學(xué);2014年
4 尹彥濤;最小平均價(jià)格期權(quán)定價(jià)降維方法研究[D];西南財(cái)經(jīng)大學(xué);2014年
5 王靜;廣義幾何布朗運(yùn)動下亞式期權(quán)價(jià)格的界[D];中南大學(xué);2014年
,本文編號:1739315
本文鏈接:http://sikaile.net/kejilunwen/yysx/1739315.html