天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

基于鏈接模型的主動半監(jiān)督社區(qū)發(fā)現(xiàn)方法

發(fā)布時間:2018-04-04 13:34

  本文選題:半監(jiān)督社區(qū)發(fā)現(xiàn) 切入點:主動學習 出處:《計算機應用》2017年11期


【摘要】:鏈接模型可對網(wǎng)絡的社區(qū)發(fā)現(xiàn)問題建模,相比具有相同目標的對稱模型和條件模型,PPL模型處理網(wǎng)絡類型更多、社區(qū)發(fā)現(xiàn)準確率更高。但PPL模型是一個無監(jiān)督模型,在網(wǎng)絡社區(qū)結構不清晰時效果不佳,且不能利用易獲取的先驗信息。為使用盡可能少的先驗,獲得社區(qū)發(fā)現(xiàn)鏈接模型性能較大的提升,提出了一個主動節(jié)點先驗學習(ANPL)算法,該算法主動選擇效用高、易標記的成對約束進行標記,基于標記的約束對自動生成信息量更大的標記節(jié)點集合;赑PL模型設計了一個融合網(wǎng)絡拓撲結構和標記節(jié)點先驗的半監(jiān)督社區(qū)發(fā)現(xiàn)(SPPL)模型,并給出模型用于半監(jiān)督社區(qū)發(fā)現(xiàn)的參數(shù)估計算法。人工網(wǎng)絡和實際網(wǎng)絡上的實驗結果表明,利用ANPL獲得的標記節(jié)點先驗和網(wǎng)絡拓撲結構,SPPL模型的社區(qū)發(fā)現(xiàn)準確率高于無監(jiān)督PPL模型及當前流行的基于非負矩陣分解(NMF)的半監(jiān)督社區(qū)發(fā)現(xiàn)模型。
[Abstract]:The link model can model the community discovery problem in the network. Compared with the symmetric model and the conditional PPL model with the same objective, the PPL model can deal with more network types and the accuracy of community discovery is higher.However, the PPL model is an unsupervised model, which is not effective when the structure of the network community is not clear, and can not use the prior information which is easy to obtain.In order to improve the performance of community discovery link model with as few priori as possible, an active node priori learning algorithm is proposed. The algorithm has high active selection utility and is easy to label in pairs of constraints.Tag-based constraints automatically generate a set of tag nodes with more information.Based on the PPL model, a semi-supervised community discovery model is designed, which combines the topology structure of the network and a priori of the labeled nodes, and a parameter estimation algorithm for semi-supervised community discovery is presented.The experimental results on artificial and real networks show that,The community discovery accuracy of the ANPL model is higher than that of the unsupervised PPL model and the current semi-supervised community discovery model based on the nonnegative matrix factorization (NMF).
【作者單位】: 河北地質大學信息工程學院;河北中醫(yī)學院公共課教學部;
【基金】:國家自然科學基金資助項目(61503260)~~
【分類號】:O157.5;TP181

【相似文獻】

相關期刊論文 前2條

1 姜立英;;試論高職學生數(shù)學學習興趣的培養(yǎng)[J];科技經(jīng)濟市場;2009年04期

2 潘根安;;關于提高大學數(shù)學學習興趣的幾點思考[J];合肥師范學院學報;2012年03期

,

本文編號:1710171

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/1710171.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶34317***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com