Banach代數(shù)中元素之和的廣義Drazin逆的一些結(jié)果(英文)
發(fā)布時間:2018-03-12 22:17
本文選題:廣義Drazin逆 切入點:Banach代數(shù) 出處:《Journal of Southeast University(English Edition)》2017年03期 論文類型:期刊論文
【摘要】:令a,b為Banach代數(shù)中的2個廣義Drazin可逆的元素.用a,b,a~d,b~d給出元素a+b和的廣義Drazin逆的明確表達式.利用Banach代數(shù)中的冪等系統(tǒng)研究了2個元素之和的廣義Drazin逆.對于Banach代數(shù)中元素a,b,首先證明了如果a,b∈A~(qnil),aba=0且ab~2=0,則a+b∈A~(qnil).并在一些新的條件下給出了a+b和的廣義Drazin逆的表達式,推廣了近期的一些結(jié)果.
[Abstract]:In this paper, we give the explicit expression of the generalized Drazin inverse of the element a b and the generalized Drazin inverse of the element a b. By using the idempotent system in the Banach algebra, we study the generalized Drazin inverse of the sum of the two elements. For the Banach algebra, we study the generalized Drazin inverse of the sum of the two elements. In this paper, we first prove that if a b 鈭,
本文編號:1603522
本文鏈接:http://sikaile.net/kejilunwen/yysx/1603522.html
最近更新
教材專著