李超三系上帶有權(quán)λ的導(dǎo)子
本文關(guān)鍵詞: 導(dǎo)子 Jordan導(dǎo)子 李超三系 權(quán)λ 出處:《吉林大學(xué)學(xué)報(理學(xué)版)》2017年04期 論文類型:期刊論文
【摘要】:通過給出李超三系上帶有權(quán)λ的(θ,φ)-導(dǎo)子和帶有權(quán)λ的Jordan(θ,φ)-導(dǎo)子的定義,得到了李超三系上帶有權(quán)λ的Jordan(θ,φ)-導(dǎo)子是帶有權(quán)λ的(θ,φ)-導(dǎo)子的充分條件,證明了李超三系上帶有權(quán)λ的Jordanθ-導(dǎo)子即為帶有權(quán)λ的θ-導(dǎo)子,并對李超三系上的(θ,φ)-導(dǎo)子進行了推廣.
[Abstract]:By giving the definitions of weighted 位 (胃, 蠁 -derivation) and weighted 位 (胃, 蠁 -derivation) on Li Chao's third series, the sufficient conditions for a Jordan (胃, 蠁 -derivation) with weight 位 to be (胃, 蠁 -derivation) are obtained. It is proved that the Jordan 胃 -derivation with weight 位 on Li Chao's third system is a 胃 -derivation with weight 位, and the (胃, 蠁 -derivation) on the #internal_person1# triple system is generalized.
【作者單位】: 東北師范大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院;
【基金】:國家自然科學(xué)基金(批準(zhǔn)號:11171055) 吉林省自然科學(xué)基金(批準(zhǔn)號:201301068JC)
【分類號】:O152.5
【相似文獻】
相關(guān)期刊論文 前10條
1 王學(xué)寬,金曉燦;近環(huán)上的交換導(dǎo)子[J];湖北大學(xué)學(xué)報(自然科學(xué)版);2000年03期
2 詹建明;T-局部導(dǎo)子的一個注記[J];江漢大學(xué)學(xué)報(自然科學(xué)版);2000年06期
3 詹建明;T-導(dǎo)子的性質(zhì)[J];曲阜師范大學(xué)學(xué)報(自然科學(xué)版);2001年01期
4 陳斌;曲凡連;;環(huán)導(dǎo)子的穩(wěn)定性[J];紡織高校基礎(chǔ)科學(xué)學(xué)報;2009年01期
5 劉莉君;曹懷信;;三角代數(shù)上的n階導(dǎo)子系[J];紡織高;A(chǔ)科學(xué)學(xué)報;2010年02期
6 霍東華;劉紅玉;鄭寶東;;廣義反導(dǎo)子的刻畫[J];哈爾濱理工大學(xué)學(xué)報;2012年03期
7 徐本龍,馬吉溥;關(guān)于局部導(dǎo)子的一個注記[J];數(shù)學(xué)進展;1998年01期
8 洪勇,張岱;局部導(dǎo)子的一個性質(zhì)和應(yīng)用[J];錦州師范學(xué)院學(xué)報(自然科學(xué)版);1999年02期
9 周園;馬晶;;素Γ-環(huán)理想上的強保交換導(dǎo)子[J];吉林大學(xué)學(xué)報(理學(xué)版);2014年02期
10 馬飛;王紅霞;;廣義反導(dǎo)子[J];紡織高校基礎(chǔ)科學(xué)學(xué)報;2007年01期
相關(guān)會議論文 前1條
1 金曉燦;;可成為交換整區(qū)的素近環(huán)[A];江蘇省現(xiàn)場統(tǒng)計研究會第八次學(xué)術(shù)年會論文集[C];2003年
相關(guān)博士學(xué)位論文 前8條
1 賀鵬飛;剩余格及相關(guān)超結(jié)構(gòu)研究[D];西北大學(xué);2015年
2 安廣宇;算子代數(shù)上某些映射的刻畫[D];華東理工大學(xué);2016年
3 袁鶴;超代數(shù)上的超導(dǎo)子和三角代數(shù)上的廣義導(dǎo)子[D];吉林大學(xué);2014年
4 王婷;自反代數(shù)上的Lie同構(gòu)和Lie導(dǎo)子[D];蘇州大學(xué);2013年
5 郭劍斌;算子代數(shù)上的導(dǎo)子、中心化子及相關(guān)映射的刻畫[D];華東理工大學(xué);2011年
6 沈其驊;算子代數(shù)上一些映射的刻畫[D];華東理工大學(xué);2012年
7 李建濤;導(dǎo)子的交換基,,Darboux多項式及tame自同構(gòu)的多重次數(shù)[D];吉林大學(xué);2012年
8 陳云鶴;算子代數(shù)上若干映射的刻畫[D];華東理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 李曉雯;具有冪等元的代數(shù)上的Lie n-重導(dǎo)子[D];上海師范大學(xué);2015年
2 王彩蓮;用映射的局部性質(zhì)刻畫三角環(huán)上的導(dǎo)子[D];太原理工大學(xué);2015年
3 王桂紅;同態(tài)和導(dǎo)子在隨機C*-三元代數(shù)的穩(wěn)定性[D];曲阜師范大學(xué);2015年
4 高彥沙;3-李代數(shù)的擴張及其特殊導(dǎo)子[D];河北大學(xué);2016年
5 周園;素Γ環(huán)上的導(dǎo)子[D];吉林大學(xué);2013年
6 陶發(fā)展;算子代數(shù)上2-局部導(dǎo)子和漸近2-局部導(dǎo)子[D];曲阜師范大學(xué);2013年
7 張文敏;(α,β)-可乘導(dǎo)子和C~*-代數(shù)間映射的連續(xù)性[D];曲阜師范大學(xué);2009年
8 梁才學(xué);高階導(dǎo)子和約當(dāng)高階導(dǎo)子的局部特征[D];杭州電子科技大學(xué);2011年
9 郭麗玲;兩類可解李代數(shù)上關(guān)于導(dǎo)子的推廣[D];福建師范大學(xué);2012年
10 李曉燕;廣義導(dǎo)子、雙重導(dǎo)子和李*-雙重導(dǎo)子的穩(wěn)定性[D];曲阜師范大學(xué);2014年
本文編號:1522820
本文鏈接:http://sikaile.net/kejilunwen/yysx/1522820.html