信用風(fēng)險(xiǎn)組合尾部概率估計(jì)的重要抽樣算法優(yōu)化
發(fā)布時(shí)間:2018-02-09 10:18
本文關(guān)鍵詞: 信用風(fēng)險(xiǎn)組合 罕見事件 尾概率 經(jīng)典兩步重要抽樣算法 零方差原則 最大值原則 重要分布函數(shù) 中心極限定理 Metroplis—Hastings算法 出處:《南京大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:信用風(fēng)險(xiǎn)組合發(fā)生大額損失是一件罕見事件,但是一旦發(fā)生將造成嚴(yán)重后果。為了有效管理罕見事件發(fā)生造成的影響,首要任務(wù)是估計(jì)出罕見事件發(fā)生的概率,或尾概率。在計(jì)算中,由于罕見事件發(fā)生的概率很小,樣本量很少,從而導(dǎo)致估計(jì)方差過大。目前經(jīng)典的兩步重要抽樣算法在解決此問題時(shí)取得一定的成果,但是經(jīng)典方法在構(gòu)造風(fēng)險(xiǎn)因子重要分布函數(shù)時(shí)采用零方差原則和最大值原則,得到的重要分布函數(shù)與理想狀況相差較大。本文根據(jù)零方差原則結(jié)合中心極限定理構(gòu)造了新的重要分布函數(shù),并通過Metropolis-Hastings算法抽取風(fēng)險(xiǎn)因子的樣本,最終有效地減小了尾概率估計(jì)的方差。數(shù)據(jù)分析方面,通過與一般蒙特卡羅方法和經(jīng)典的兩步重要抽樣方法作數(shù)值比較,發(fā)現(xiàn)本文提出的算法能夠明顯減小尾概率估計(jì)的方差,得到預(yù)期效果。
[Abstract]:The occurrence of large portfolio credit risk loss is a rare event, but the event will cause serious consequences. In order to have the impact of effective management of the rare event, the first task is to estimate the probability of rare events, or tail probability. In the calculation, the probability of rare events is very small, small amount of sample, which leads to the estimation variance is too large. The classic two step important sampling algorithm made some achievements in solving this problem, but the classical method in constructing the important risk factor distribution function with zero variance principle and maximum principle, important distribution function and ideal conditions are different. According to the principle of combining the zero variance central limit theorem the distribution function of the new structure, and the risk factor of the sample Metropolis-Hastings algorithm, finally effectively reduces the variance of tail probability estimation. In the aspect of data analysis, by comparing with general Monte Carlo method and classic two step importance sampling method, it is found that the algorithm proposed in this paper can significantly reduce the variance of tail probability estimation and get the expected effect.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O212.2
,
本文編號:1497702
本文鏈接:http://sikaile.net/kejilunwen/yysx/1497702.html
最近更新
教材專著