幾類漸近擬偽壓縮型映像不動點的迭代算法
發(fā)布時間:2018-01-09 23:16
本文關(guān)鍵詞:幾類漸近擬偽壓縮型映像不動點的迭代算法 出處:《浙江師范大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 漸近擬偽壓縮型映像 帶誤差的修改的Ishikawa迭代序列 不動點 公共零點 粘性逼近法 增生算子 漸近非擴張映像 變分不等式 強收斂性
【摘要】:本篇論文主要在實Banach空間中,研究了漸近擬偽壓縮型映像的帶誤差的修改的Ishikawa迭代序列強收斂性,有限族增生算子公共零點的粘性逼近法,以及漸近非擴張映像不動點的迭代算法.結(jié)果一,在任意實Banach空間中引入帶誤差的修改的Ishikawa迭代序列{xn}定義并證明了迭代序列{xn}強收斂到依中間意義漸近非擴張的漸近擬偽壓縮型映像的不動點.結(jié)果二,在嚴(yán)格凸的,具有弱連續(xù)的對偶映像Jφ的自反的Banach空間中,利用增生算子的預(yù)解算子,引入以下新的粘性迭代序列證明了當(dāng)滿足適當(dāng)條件時,迭代序列{xn}強收斂到有限族增生算子公共零點.結(jié)果三,在一致凸Banach空間中,引入以下新的關(guān)于漸近非擴張映像不動點的迭代算法證明當(dāng)滿足適當(dāng)條件時,該序列{xn}強收斂于漸近非擴張映像T的不動點x*,且x*是以下變分不等式的解這些結(jié)果在一定程度上改進(jìn)和推廣了最近一些其他作者的相關(guān)成果.文章的結(jié)構(gòu)是:第一章介紹了相關(guān)的研究背景,與本篇論文相關(guān)的概念,引理;第二章證明了帶誤差的修改的Ishikawa迭代序列強收斂性;第三章研究了有限族增生算子公共零點的粘性逼近法;第四章討論了漸近非擴張映像不動點的迭代算法.
[Abstract]:In this paper, we study the strong convergence of modified Ishikawa iterative sequences with errors for asymptotically quasi-pseudo-contractive type mappings in real Banach spaces. A common 00:00 viscous approximation method for a finite family of accretive operators and an iterative algorithm for fixed points of asymptotically nonexpansive mappings. In this paper, we introduce a modified Ishikawa iterative sequence {xn} with errors in arbitrary real Banach spaces and prove that the iterative sequence {xn} strongly converges to asymptotically nonexpansive in the intermediate sense. Fixed points of pseudo contractive type mappings. Results 2. In a reflexive Banach space with a weakly continuous dual mapping J 蠁, the following new viscous iterative sequences are introduced by using the resolvent operator of the accretive operator. The iterative sequence {xn} strongly converges to the common 00:00 of a finite family of accretive operators. Result 3, in uniformly convex Banach spaces. The following new iterative algorithm for fixed point of asymptotically nonexpansive mappings is introduced to prove that the sequence {xn} strongly converges to the fixed point x * of asymptotically nonexpansive mappings T when the appropriate conditions are satisfied. And x* is the solution of the following variational inequalities. To some extent, these results improve and generalize the related results of other authors. The structure of this paper is as follows: the first chapter introduces the relevant research background. The concepts and Lemma related to this paper; In chapter 2, the strong convergence of modified Ishikawa iterative sequences with errors is proved. In chapter 3, the viscous approximation method of common 00:00 for finite family of accretive operators is studied. In chapter 4th, the iterative algorithm for fixed points of asymptotically nonexpansive mappings is discussed.
【學(xué)位授予單位】:浙江師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O177.91
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 曾六川;Banach空間中帶誤差的修改的Ishikawa迭代程序[J];數(shù)學(xué)學(xué)報;2004年02期
2 羅紅平;王元恒;;三重復(fù)合修正的Ishikawa迭代序列強收斂性[J];浙江師范大學(xué)學(xué)報(自然科學(xué)版);2013年01期
,本文編號:1402923
本文鏈接:http://sikaile.net/kejilunwen/yysx/1402923.html
最近更新
教材專著