基于眾包IMU數(shù)據(jù)的室內(nèi)地圖建立方法研究
[Abstract]:Nowadays, with the rapid popularity of smartphones, high-precision indoor positioning services are developing rapidly, people can use portable smartphones to enjoy positioning services. Generally speaking, whether based on WiFi, Bluetooth, zigbee or visual positioning technology, their deployment needs to obtain accurate indoor geographic information in advance. With the help of accurate indoor geographic information, the indoor navigation system can build a specific database in the offline phase, and when the positioning results are returned in the online phase, the location and navigation estimates can be clearly displayed in the smartphone. However, if the environment is unknown or the accurate indoor building map is not obtained, there is no prerequisite for the deployment of indoor positioning technology, so it is necessary to establish indoor map technology quickly and cheaply. Therefore, in order to solve the problem of lack of indoor map in unknown indoor environment, this paper proposes a method of building indoor map in crowdsourcing, which realizes the rapid establishment of indoor map through crowdsourcing user IMU (Inertial measurement unit) data in unknown environment. The specific research contents are as follows: firstly, in order to solve the problem of poor accuracy of PDR (Pedestrian Dead Reckoning) algorithm in crowdsourcing measurement, a crowdsourcing user posture recognition and trajectory starting point detection algorithm based on PDR algorithm is proposed. The algorithm can effectively generate crowdsourcing PDR trajectories in different measurement modes, and further improve the trajectory accuracy. Secondly, according to the walking habits of indoor users, a kind of indoor environment user walking model is established to solve the problem of lack of unified model for indoor user trajectory distribution. The model can effectively describe the indoor walking habits of users and give the probability distribution of PDR trajectory. In addition, this paper uses a clustering algorithm based on density peak value to cluster the long straight corridor data, and according to 3? In principle, the corridor width corresponding to each long straight corridor is calculated, and the important parameters of indoor map establishment are obtained. Finally, in order to solve the problem of PDR error and crowdsourcing error when indoor crowdsourcing user trajectory is constructed, based on indoor pedestrian walking model, an indoor map establishment method based on trajectory density analysis is proposed in this paper. This method can effectively construct indoor map in unknown environment. The method includes the division of hot spots, the calculation of trajectory density, the screening of hot spots, the generation of map contours and the generation of straight maps. In this paper, Alpha-shape algorithm is used to extract the edge of the reserved hot spot, and the outline of indoor map is obtained. Finally, by solving the width of the corridor, the outline is straightened and the accurate indoor map is obtained. Compared with the real environment indoor map, the indoor map establishment method based on crowdsourcing IMU data can realize the low cost and fast establishment of indoor map under the condition of ensuring the accuracy. Thus, the indoor geographic information can be obtained quickly in unknown environment, and the application prospect of indoor positioning can be expanded.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN96
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 陳國(guó)良;李飛;張言哲;;一種基于自適應(yīng)波峰檢測(cè)的MEMS計(jì)步算法[J];中國(guó)慣性技術(shù)學(xué)報(bào);2015年03期
2 關(guān)越魏;何波賢;于仁清;丁廣威;;基于四元數(shù)解算陀螺儀姿態(tài)角算法的實(shí)現(xiàn)[J];電腦編程技巧與維護(hù);2015年09期
3 陳興秀;張金藝;晏理;劉江;周文強(qiáng);;三維復(fù)雜運(yùn)動(dòng)模式航跡推算慣性導(dǎo)航室內(nèi)定位[J];應(yīng)用科學(xué)學(xué)報(bào);2014年04期
4 錢小敏;陳斌;;室內(nèi)GIS的研究現(xiàn)狀與前景[J];地理空間信息;2012年04期
5 王富強(qiáng);薛志偉;齊曉飛;林蓉;;室內(nèi)地圖研究綜述[J];地礦測(cè)繪;2012年02期
6 周飛;;利用Alpha Shapes算法提取離散點(diǎn)輪廓線[J];湖北廣播電視大學(xué)學(xué)報(bào);2010年02期
7 張榮輝;賈宏光;陳濤;張躍;;基于四元數(shù)法的捷聯(lián)式慣性導(dǎo)航系統(tǒng)的姿態(tài)解算[J];光學(xué)精密工程;2008年10期
8 沈蔚;李京;陳云浩;鄧?yán)?彭光雄;;基于LIDAR數(shù)據(jù)的建筑輪廓線提取及規(guī)則化算法研究[J];遙感學(xué)報(bào);2008年05期
相關(guān)博士學(xué)位論文 前1條
1 陳偉;基于GPS和自包含傳感器的行人室內(nèi)外無(wú)縫定位算法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前6條
1 蘇邵麟;基于手機(jī)傳感器和地標(biāo)的Radio Map建立算法研究[D];哈爾濱工業(yè)大學(xué);2016年
2 陳偉;基于四元數(shù)和卡爾曼濾波的姿態(tài)角估計(jì)算法研究與應(yīng)用[D];燕山大學(xué);2015年
3 張儷文;基于運(yùn)動(dòng)傳感器的行人航跡推算方法研究[D];中國(guó)礦業(yè)大學(xué);2015年
4 殷紅;基于foot-mounted的IMU室內(nèi)行人航跡推算研究[D];南昌大學(xué);2013年
5 齊保振;基于運(yùn)動(dòng)傳感的個(gè)人導(dǎo)航系統(tǒng)及算法研究[D];浙江大學(xué);2013年
6 姜朋;基于MEMS-IMU的捷聯(lián)式慣性導(dǎo)航系統(tǒng)技術(shù)與實(shí)現(xiàn)研究[D];哈爾濱工程大學(xué);2012年
,本文編號(hào):2476521
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2476521.html