北斗接收機(jī)基帶信號(hào)處理算法關(guān)鍵技術(shù)研究
[Abstract]:At present, with the rapid development of global satellite navigation system (GNSS,Global Navigation Satellite System), it has become an important battlefield of space territory, scientific and technological level and military game between developed and some developing countries, the GPS (Global Positioning System), of the United States Russia's GLONASS, Europe's GALILEO, China's Beidou Satellite Navigation system (BeiDou Navigation Satellite System) plays an important role in GNSS. After considerable development, Beidou system has now developed to realize the positioning of the Asia-Pacific region, navigation and short message communication coverage, providing a variety of user experiences for authorized and open users. Support a large number of users to achieve more sophisticated positioning and navigation services, and plans to achieve global coverage by 2020. However, with the increasing number of service areas, the increasing requirements of users for positioning and navigation accuracy and speed, and the increasing number of harsh environments for receivers, all provide important opportunities for the development of each system, and also bring great challenges to the development of each system. Therefore, studying the baseband signal processing algorithm of the positioning and navigation receiver, and improving the performance of the positioning and navigation of the receiver has important practical significance and huge development space. Beidou receiver is an important platform of Beidou system at the client end. When the user receives the satellite signal, finally completes the positioning and navigation solution, generates the positioning and navigation data or completes other auxiliary functions, it is realized at the receiver level. In the continuous optimization and development of each system, the navigation and positioning performance is improved, and the commonly used improved signal system method involves global planning, which is difficult to realize; the optimization of antenna location is greatly affected by the terrain; and the innovative antenna design brings greater hardware loss. In this paper, the optimization and improvement of acquisition and tracking two important signal processing processes in Beidou receiver baseband signal processing are studied. The positioning principle, signal composition, system composition and receiver working principle of Beidou system are analyzed in detail. The acquisition principle of Beidou receiver and the research status in the field of acquisition at home and abroad. In view of the influence of many interference signals in urban environment on the acquisition of satellite signals by Beidou system, this paper presents an anti-jamming acquisition algorithm for Beidou system based on wavelet transform. The Meyer wavelet is used to decompose, and then the energy of each band is compared. The frequency band of narrow band noise is determined by comparing the results, and the coefficients of the band of noise are attenuated. Finally, the signal is reconstructed to eliminate the narrowband interference. The simulation results show that the proposed method can resist narrow band continuous wave interference in the case of a single antenna, and the acquisition gain of the receiver can be increased by 5 dB on average. At the same time, aiming at the narrow street environment with high buildings in the city, the Beidou receiver is often blocked from receiving satellite signals, which leads to the problem that the tracking loop is out of lock and the navigation data can not be solved normally. In this paper, a vector tracking algorithm based on the improved extended Kalman filter is proposed. By coupling the signal characteristics of each channel, strong signal-assisted weak signal tracking is realized. Thus, when the satellite signal is occluded, the location is still more accurate. Experimental results show that when the number of visible stars received by the Beidou receiver is less than 4 in the urban street environment, the algorithm in this paper can still achieve more accurate positioning. In this paper, in improving the receiver baseband signal processing level, the acquisition and tracking processes are distinguished, and the optimization and improvement of each process algorithm is given. Without increasing the hardware loss and the complexity of the algorithm, the speed and accuracy of the positioning solution of the receiver are improved, which provides some reference for the software optimization of the Beidou receiver.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN967.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 佟海旭;;加速應(yīng)用進(jìn)程開創(chuàng)北斗衛(wèi)星系統(tǒng)應(yīng)用新紀(jì)元[J];全球定位系統(tǒng);2008年03期
2 ;中國北斗——閃耀自主創(chuàng)新光芒的燦爛星座[J];衛(wèi)星與網(wǎng)絡(luò);2009年Z1期
3 桂祺瑩;;北斗的選擇題[J];衛(wèi)星與網(wǎng)絡(luò);2009年Z1期
4 劉玉;;北斗應(yīng)用,另辟蹊徑——博納雨田獨(dú)具特色的北斗個(gè)性化之路[J];數(shù)字通信世界;2012年12期
5 ;再次走近“北斗”——第二十一期科學(xué)家與媒體面對(duì)面活動(dòng)[J];科技傳播;2013年01期
6 ;北斗衛(wèi)星將對(duì)精密農(nóng)業(yè)“大有作為”[J];種子世界;2013年07期
7 ;國家級(jí)北斗衛(wèi)星導(dǎo)航產(chǎn)品檢測(cè)機(jī)構(gòu)成立[J];空間電子技術(shù);2013年03期
8 左劍峰;;北斗衛(wèi)星通信在物聯(lián)網(wǎng)民用領(lǐng)域的技術(shù)應(yīng)用[J];中國新通信;2013年18期
9 高齊生;彭國均;魏武財(cái);;北斗衛(wèi)星系統(tǒng)在我國南海航海保障中的應(yīng)用[J];中國海事;2013年10期
10 王冠生;鄭江華;瓦哈甫·哈力克;許偉偉;;北斗衛(wèi)星在智慧城市建設(shè)中的應(yīng)用評(píng)述[J];傳感器與微系統(tǒng);2013年11期
相關(guān)會(huì)議論文 前10條
1 袁海波;廣偉;;北斗衛(wèi)星共視時(shí)間傳遞算法與實(shí)驗(yàn)分析[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S04原子鐘技術(shù)與時(shí)頻系統(tǒng)[C];2012年
2 ;中國北斗衛(wèi)星導(dǎo)航(南京)產(chǎn)業(yè)基地[A];2011中國衛(wèi)星應(yīng)用大會(huì)會(huì)議文集[C];2011年
3 吳才聰;蘇懷洪;褚天行;蔡亞平;;基于北斗的移動(dòng)應(yīng)急監(jiān)控與指揮技術(shù)[A];第二屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
4 郭忠寶;馮臻;;北斗衛(wèi)星在民機(jī)安全性監(jiān)控中的應(yīng)用初探[A];第九屆長三角科技論壇——航空航天科技創(chuàng)新與長三角經(jīng)濟(jì)轉(zhuǎn)型發(fā)展分論壇論文集[C];2012年
5 王瑤;陳向東;王森;;從政策法規(guī)思考如何推動(dòng)北斗衛(wèi)星導(dǎo)航應(yīng)用及產(chǎn)業(yè)化[A];第二屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
6 劉忠華;蔡亮;張立培;;基于時(shí)頻總線技術(shù)的北斗高精度時(shí)頻服務(wù)器研制[A];第四屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集-S4 原子鐘技術(shù)與時(shí)頻系統(tǒng)[C];2013年
7 梁霄;張伯熹;裴英飛;;北斗衛(wèi)星導(dǎo)航數(shù)據(jù)質(zhì)量分析[A];第四屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集-S5 衛(wèi)星導(dǎo)航增強(qiáng)與完好性監(jiān)測(cè)[C];2013年
8 蔡亮;張道農(nóng);張立培;;基于時(shí)頻總線技術(shù)的北斗高精度時(shí)頻服務(wù)器研制[A];2013年中國電機(jī)工程學(xué)會(huì)年會(huì)論文集[C];2013年
9 郭煜;;基于北斗衛(wèi)星定位技術(shù)的商用車輛車聯(lián)網(wǎng)運(yùn)營服務(wù)[A];第七屆中國智能交通年會(huì)論文集[C];2012年
10 王永超;高東博;李紳;;北斗氣象預(yù)警收發(fā)終端[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年
相關(guān)重要報(bào)紙文章 前10條
1 記者 劉蒙丹;中國(南京)北斗衛(wèi)星導(dǎo)航產(chǎn)業(yè)推進(jìn)大會(huì)召開[N];南京日?qǐng)?bào);2011年
2 記者 霍光;緋聞為何青睞阿里與北斗?[N];第一財(cái)經(jīng)日?qǐng)?bào);2014年
3 記者 袁于飛;北斗衛(wèi)星故障快速恢復(fù)技術(shù)獲重大突破[N];光明日?qǐng)?bào);2014年
4 記者 吳巧君;北斗衛(wèi)星導(dǎo)航民用開發(fā)項(xiàng)目落戶本市[N];天津日?qǐng)?bào);2011年
5 國金證券 程兵;拐點(diǎn)將至 北斗產(chǎn)業(yè)有望駛?cè)肟燔嚨繹N];中國證券報(bào);2011年
6 易振環(huán) 謝軼群;北斗衛(wèi)星導(dǎo)航 民用項(xiàng)目落戶我市[N];湄洲日?qǐng)?bào);2011年
7 王振滿 本報(bào)記者 鄧淑華;南京高新區(qū)打造北斗衛(wèi)星導(dǎo)航產(chǎn)業(yè)基地[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2011年
8 陳薇亦;南京投資百億打造北斗衛(wèi)星導(dǎo)航產(chǎn)業(yè)基地[N];江蘇經(jīng)濟(jì)報(bào);2011年
9 夏文燕;南京打造全國知名“北斗”產(chǎn)業(yè)基地[N];江蘇科技報(bào);2011年
10 本報(bào)記者 劉蒙丹;專家為南京北斗產(chǎn)業(yè)發(fā)展“支招”[N];南京日?qǐng)?bào);2011年
相關(guān)碩士學(xué)位論文 前10條
1 熊林;基于北斗衛(wèi)星通訊的船舶油耗管理系統(tǒng)設(shè)計(jì)[D];集美大學(xué);2015年
2 朱詠秋;基于北斗二代的移動(dòng)自動(dòng)閉塞下列車運(yùn)行組織方法研究[D];西南交通大學(xué);2015年
3 許培培;基于北斗/GPS的船載多模導(dǎo)航智能終端研發(fā)[D];集美大學(xué);2015年
4 張宇陽;基于北斗/SINS融合的列車定位方法研究[D];北京交通大學(xué);2016年
5 劉寶國;北斗接收機(jī)抗干擾技術(shù)研究及硬件設(shè)計(jì)[D];中國海洋大學(xué);2015年
6 李帥;北斗接收機(jī)基帶信號(hào)處理算法關(guān)鍵技術(shù)研究[D];太原理工大學(xué);2016年
7 王慶雷;北斗導(dǎo)航信號(hào)捕獲算法研究及北斗授時(shí)服務(wù)系統(tǒng)設(shè)計(jì)[D];西安電子科技大學(xué);2014年
8 陳昊;基于北斗定位及通信的船載導(dǎo)航設(shè)計(jì)[D];杭州電子科技大學(xué);2015年
9 陳超;基于北斗衛(wèi)星授時(shí)的無線自動(dòng)作息控制系統(tǒng)的研究與設(shè)計(jì)[D];武漢工業(yè)學(xué)院;2012年
10 顏浩;北斗衛(wèi)星信號(hào)的捕獲跟蹤研究[D];成都理工大學(xué);2014年
,本文編號(hào):2464756
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2464756.html