煤系地層接收彈性波信號的盲源分離方法研究
[Abstract]:This subject comes from the project of National Natural Science Foundation of China "the fine detection theory of coal bed reflection trough wave based on continuous source". In the project of National Natural Science Foundation of China, it is necessary to separate the source signals from the observed signals when the mixed model and the source signals of the elastic wave signals received by the coal measures stratum cannot be accurately obtained. The purpose of this paper is to study and design a blind source separation algorithm which is suitable for receiving elastic wave signals in coal measure strata. (1) the development of blind source separation at home and abroad is described in detail and the different applications of different algorithms are classified. The basic knowledge and separation requirements of blind source separation are expounded, and the noise environment of coal measure strata and the transmission characteristics of elastic waves are determined. The design requirements of blind source separation algorithm for receiving elastic wave signals in coal measure strata are defined. (2) the nonlinear function and orthogonalization formula of FastICA algorithm based on negative entropy are selected. The mixed elastic wave signal received by coal measure stratum is processed separately with natural gradient algorithm, and the mixed signal separation is successfully realized by Matlab simulation experiment. It is proved that the non-Gaussian criterion, likelihood criterion and mutual information criterion are essentially identical to each other, so that the FastICA algorithm based on negative entropy is proved. Both the natural gradient algorithm and the FastICA algorithm based on mutual information can realize the blind source separation of receiving elastic wave signals in coal measure strata. Two inherent problems of the separation sequence and the uncertainty of the amplitude of the separated signals are verified. (3) A new non-orthogonal decomposition algorithm is proposed. The traditional independent component analysis (ICA) algorithm needs to satisfy the premise that the number of observed signals is no less than that of the source signals, and the independent components must be non-Gao Si distribution and so on. It greatly reduces the practicability of independent component analysis in blind source separation of elastic wave signals in actual coal measure strata. The proposed new non-orthogonal decomposition algorithm does not need to satisfy the above prerequisites. The correlation analysis is used to select the elementary function from a single observed signal, and then, These function functions are used as the basis of non-orthogonal signal decomposition algorithm to separate different source signals from one mixed signal one by one. Simulation experiments are carried out on a single typical observation signal composed of square wave, sine wave, attenuation wave modulation signal and random noise. The experiments show that the algorithm can extract all the source signals accurately from a single observation signal. Compared with the independent component analysis (ICA), which is generally accepted at present, it has better performance such as separation sequence determination, separation signal energy symbol determination and so on.
【學位授予單位】:山東科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN911.7
【參考文獻】
相關期刊論文 前10條
1 劉婷;張錦;李燈熬;;改進的自然梯度盲源分離算法在非平穩(wěn)環(huán)境中的應用[J];電子器件;2016年03期
2 于剛;周以齊;;單通道盲源分離算法及其在工程機械振源分析中的應用[J];機械工程學報;2016年10期
3 孫成禹;邵婕;藍陽;唐杰;;基于獨立分量分析基的地震隨機噪聲壓制[J];石油物探;2016年02期
4 周竹生;羅勇濤;;地震信號時頻分析中的希爾伯特黃變換研究[J];物探化探計算技術;2016年01期
5 顏中輝;王峗;李攀峰;秦軻;;基于希爾伯特-黃變換的多分量地震去噪方法研究及應用[J];地球物理學進展;2015年06期
6 楊杰明;齊厚穎;;改進的互信息最小化非線性盲源分離算法[J];電測與儀表;2015年09期
7 張瑞;郭銀景;藺香運;;一種新的隨機信號的非正交分解方法[J];數(shù)據(jù)采集與處理;2013年06期
8 陳琛;馬慶倫;李燈熬;趙菊敏;;NGA實現(xiàn)互信息量最小化的盲源分離[J];計算機工程與應用;2013年04期
9 李宗;馮志鵬;褚福磊;;基于改進的串音誤差的盲分離評價指標[J];振動與沖擊;2012年18期
10 徐先峰;馮大政;;一種快速的解盲源分離新算法[J];電子學報;2010年12期
相關碩士學位論文 前9條
1 周飛飛;基于過完備字典表示的稀疏分解算法研究[D];南京郵電大學;2016年
2 張文霞;欠定盲源分離混合矩陣估計及源信號恢復方法研究[D];燕山大學;2016年
3 王立凱;希爾伯特-黃變換在雷達測井中的應用研究[D];電子科技大學;2016年
4 李玉霞;欠定盲源分離混合矩陣估計方法研究[D];燕山大學;2015年
5 趙倩云;基于欠定盲源分離的管道泄漏信號提取方法研究[D];燕山大學;2015年
6 邵蓮蓮;基于自然梯度的fast-ICA算法研究[D];西安電子科技大學;2014年
7 王維強;獨立分量分析在地震勘探中的應用研究[D];中國石油大學(華東);2012年
8 李建鋒;基于盲源分離的地震信號處理方法研究及應用[D];中國石油大學(華東);2012年
9 鄧添予;基于固定點算法的地震信號隨機噪聲盲分離方法應用研究[D];成都理工大學;2010年
,本文編號:2462683
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2462683.html