天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

基于頻域稀疏特性的頻譜感知算法研究

發(fā)布時(shí)間:2019-04-17 09:03
【摘要】:隨著無線通信技術(shù)的迅速發(fā)展,靜態(tài)的頻譜分配策略和使用方式已不能滿足其高速率、高質(zhì)量的通信需求。而認(rèn)知無線電系統(tǒng)為動(dòng)態(tài)分配和使用頻譜提供新的方案,自1999年提出以來,受到了廣泛關(guān)注和研究。作為認(rèn)知無線電的核心技術(shù),頻譜檢測(cè)算法通過實(shí)時(shí)準(zhǔn)確的識(shí)別“頻譜空穴”,為非授權(quán)用戶提供接入機(jī)會(huì),進(jìn)而提高頻譜利用效率。信號(hào)在某些域具有的稀疏特性,一方面可以更加集中信號(hào)的能量,另一方面也可以有效降低采樣速率和難度,分別對(duì)應(yīng)頻譜檢測(cè)算法中對(duì)高檢測(cè)概率和動(dòng)態(tài)實(shí)時(shí)檢測(cè)的要求。所以,本文嘗試將稀疏特性和檢測(cè)算法結(jié)合,著重研究基于頻域稀疏特性的檢測(cè)算法,并對(duì)算法的檢測(cè)性能進(jìn)行分析。首先,論文介紹了課題的研究背景和意義,分析現(xiàn)有檢測(cè)算法的優(yōu)勢(shì)和缺陷,引出本文重點(diǎn)研究的基于功率譜估計(jì)最大值的檢測(cè)算法和基于MWC-SBL系統(tǒng)的檢測(cè)算法,接著總結(jié)了這兩種算法所用到的基礎(chǔ)理論,包括功率譜估計(jì)、隨機(jī)帶寬轉(zhuǎn)換器、稀疏貝葉斯學(xué)習(xí)等,并給出了相應(yīng)的仿真結(jié)果。其次,深入分析基于功率譜估計(jì)最大值的檢測(cè)算法,定義統(tǒng)計(jì)判決變量為信號(hào)功率譜估計(jì)最大值。在分析統(tǒng)計(jì)判決變量的均值、方差、相關(guān)性等統(tǒng)計(jì)特性之后,利用卡方分布對(duì)H0、H1假設(shè)下的統(tǒng)計(jì)判決變量進(jìn)行分布建模,推導(dǎo)檢測(cè)概率、虛警概率、判決門限等理論表達(dá)式。仿真部分,驗(yàn)證卡方分布建模的正確性和選取估計(jì)最大值作為統(tǒng)計(jì)判決變量的優(yōu)勢(shì),分析采樣數(shù)據(jù)長度、功率譜分段數(shù)目對(duì)檢測(cè)性能的影響,并與能量檢測(cè)算法進(jìn)行對(duì)比。隨后的仿真表明,不同的窗函數(shù)選取對(duì)檢測(cè)概率和卡方分布建模的準(zhǔn)確性都有影響且二者呈現(xiàn)相反的趨勢(shì)。盡管基于功率譜估計(jì)最大值的算法在稀疏窄帶信號(hào)的檢測(cè)中有著獨(dú)特的優(yōu)勢(shì),但由于前端采樣的限制,對(duì)于稀疏多頻帶信號(hào)并不能達(dá)到及時(shí)檢測(cè)的要求。最后,研究了基于MWC-SBL系統(tǒng)的檢測(cè)算法,以壓縮采樣為基礎(chǔ),利用稀疏貝葉斯學(xué)習(xí)算法,充分挖掘觀測(cè)數(shù)據(jù)的信息,為寬帶檢測(cè)提供另一種方案。定義支撐集為統(tǒng)計(jì)判決變量,通過支撐集的檢測(cè)情況,完成每個(gè)頻帶信號(hào)存在與否的判斷。在完成算法描述后,根據(jù)恢復(fù)得到的支撐集與原始支撐集之間的關(guān)系,定義檢測(cè)概率、虛警概率的統(tǒng)計(jì)表達(dá)式。隨后的仿真重點(diǎn)關(guān)注固定位置單信號(hào)和多信號(hào)的檢測(cè)性能、隨機(jī)位置單信號(hào)和多信號(hào)的檢測(cè)性能、不同匹配原則對(duì)檢測(cè)性能的提升以及均方誤差等指標(biāo),并與基于MWC-OMP的檢測(cè)算法進(jìn)行對(duì)比。仿真表明,基于MWC-SBL檢測(cè)算法在檢測(cè)概率等性能指標(biāo)上比MWC-OMP檢測(cè)算法更具優(yōu)勢(shì)。
[Abstract]:With the rapid development of wireless communication technology, static spectrum allocation strategy and usage mode can no longer meet its high-speed, high-quality communication needs. Cognitive radio system provides a new scheme for dynamic allocation and use of spectrum. Since it was put forward in 1999, it has received extensive attention and research. As the core technology of cognitive radio, spectrum detection algorithm can identify "spectrum holes" in real-time and accurately, so as to provide access opportunities for unauthorized users and improve the efficiency of spectrum utilization. The sparse characteristics of the signal in some domains can concentrate the energy of the signal on the one hand, on the other hand, it can also effectively reduce the sampling rate and difficulty, corresponding to the requirements of high detection probability and dynamic real-time detection in the spectrum detection algorithm respectively. Therefore, this paper attempts to combine sparse characteristics with detection algorithms, focusing on the detection algorithm based on frequency domain sparse characteristics, and analyzes the detection performance of the algorithm. Firstly, the paper introduces the research background and significance of the subject, analyzes the advantages and disadvantages of the existing detection algorithms, and leads to the detection algorithm based on the maximum power spectrum estimation and the detection algorithm based on MWC-SBL system. Then the basic theories used in these two algorithms are summarized, including power spectrum estimation, random bandwidth converter, sparse Bayesian learning, and the corresponding simulation results are given. Secondly, the detection algorithm based on the maximum value of power spectrum estimation is deeply analyzed, and the statistical decision variable is defined as the maximum value of signal power spectrum estimation. After analyzing the statistical characteristics of statistical decision variables, such as mean value, variance and correlation, the statistical decision variables under H _ 0 and H _ 1 assumptions are modeled by chi-square distribution, and the theoretical expressions of detection probability, false alarm probability and decision threshold are derived. In the simulation part, the correctness of the chi-square distribution modeling and the advantage of selecting the estimated maximum value as the statistical decision variable are verified. The effects of the length of sampling data and the number of power spectrum segments on the detection performance are analyzed, and compared with the energy detection algorithm. The simulation results show that different window functions have an effect on the accuracy of detection probability and chi-square distribution modeling, and they show opposite trend. Although the algorithm based on power spectrum estimation has unique advantages in the detection of sparse narrow-band signals, due to the limitation of front-end sampling, sparse multi-band signals can not meet the requirements of timely detection. Finally, the detection algorithm based on MWC-SBL system is studied. On the basis of compressed sampling, sparse Bayesian learning algorithm is used to fully mine the information of observed data, which provides another scheme for broadband detection. The support set is defined as a statistical decision variable. Through the detection of the support set, the existence of each frequency band signal is judged. After the algorithm is described, the statistical expressions of detection probability and false alarm probability are defined according to the relationship between the restored support set and the original support set. The following simulation focuses on the detection performance of fixed position single signal and multi-signal, the detection performance of random position single signal and multi-signal, the improvement of detection performance by different matching principles and the mean square error (MSE), and so on. And compared with the detection algorithm based on MWC-OMP. Simulation results show that the MWC-SBL-based detection algorithm has more advantages than the MWC-OMP detection algorithm in terms of detection probability and other performance indicators.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN925

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 李映雪;雷靜;鐘士元;黃春明;黃超;;認(rèn)知無線網(wǎng)絡(luò)中基于特征向量的協(xié)方差盲檢測(cè)方法[J];電信科學(xué);2015年11期

2 張中兆;高玉龍;;認(rèn)知無線電中的頻譜感知研究進(jìn)展[J];黑龍江大學(xué)工程學(xué)報(bào);2011年03期

3 戴瓊海;付長軍;季向陽;;壓縮感知研究[J];計(jì)算機(jī)學(xué)報(bào);2011年03期

4 李樹濤;魏丹;;壓縮傳感綜述[J];自動(dòng)化學(xué)報(bào);2009年11期

5 陳星;賀志強(qiáng);吳偉陵;;基于循環(huán)平穩(wěn)的多天線感知無線電頻譜檢測(cè)[J];北京郵電大學(xué)學(xué)報(bào);2008年02期

相關(guān)博士學(xué)位論文 前2條

1 李含青;基于壓縮感知的寬帶頻譜感知技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年

2 蓋建新;基于MWC的稀疏寬帶信號(hào)亞奈奎斯特采樣技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前5條

1 黃振;稀疏多頻帶信號(hào)的亞奈奎斯特采樣與重構(gòu)算法研究[D];云南大學(xué);2015年

2 畢崇耀;基于塊壓縮感知理論的結(jié)構(gòu)化信號(hào)檢測(cè)方法與實(shí)現(xiàn)[D];北京郵電大學(xué);2015年

3 張媛;貝葉斯壓縮感知在無線網(wǎng)絡(luò)定位中的應(yīng)用研究[D];浙江大學(xué);2013年

4 陳曉芳;基于壓縮感知的寬帶頻譜檢測(cè)[D];中南民族大學(xué);2012年

5 楊杰;認(rèn)知無線電循環(huán)平穩(wěn)特征值檢測(cè)的算法研究[D];浙江大學(xué);2010年

,

本文編號(hào):2459290

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2459290.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ff65f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com