基于激光雷達(dá)的同時(shí)定位與室內(nèi)地圖構(gòu)建算法研究
[Abstract]:With the improvement of industrial automation in China, more and more factories and warehousing workshops realize intelligent production and transportation without the need of manual participation. In this process, (Automated Guided Vehicle,AGV (automatic guidance vehicle) plays an important role as a new type of intelligent transportation device. In this paper, the algorithm of simultaneous localization and indoor map construction of indoor mobile robot based on lidar is studied. Firstly, the coordinate system of robot system is defined, the motion model based on odometer and the environment sensing model of lidar are built, and the reading method of laser radar data is studied according to the type of data transmitted by laser radar. The feasibility of using the raster map as the map model is compared and the research of the raster map status updating algorithm based on the probability model is completed. The effect of the algorithm is verified by MATLAB. In order to solve the problem of large position and orientation estimation error caused by particle degradation in SLAM location algorithm based on particle filter, this paper is based on Bayesian filtering theory and deduces the theory of particle filter localization algorithm. The reason of particle degradation in particle filter is analyzed. The resampling algorithm is studied, particle filter based on different resampling algorithm is designed, and the localization experiment in simulation environment is completed. According to the experimental results, the particle filter, which is more suitable for the layered resampling algorithm, is selected. On this basis, the concept of Rao-Blackwellized particle filter (RBPF) is introduced, and the conventional RBPF-SLAM algorithm is studied. Based on the conventional RBPF-SLAM algorithm framework, the theory of mixed proposal distribution is studied, and an improved RBPF-SLAM algorithm based on stratified resampling is proposed. The effectiveness of the improved algorithm is verified by writing a simulation program and using the open dataset to carry out simulation experiments. Using Turtlebot robot as the robot experimental platform and PC as the host computer, the original and improved SLAM algorithm are used for the real environment localization and map building experiment respectively. The experiment shows that the improved algorithm can get better localization and mapping effect. Finally, the embedded transplant of the algorithm is completed, and the location and construction of the AGV prototype under the given running trajectory are carried out, which verifies the effectiveness of the algorithm in practical application.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242;TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張一棟;;用于自主移動(dòng)機(jī)器人的導(dǎo)航定位技術(shù)分析[J];集成電路應(yīng)用;2017年02期
2 李建勇;劉雪梅;李雪霞;杜博陽(yáng);;基于ROS的開源移動(dòng)機(jī)器人系統(tǒng)設(shè)計(jì)[J];機(jī)電工程;2017年02期
3 常皓;楊巍;;基于全向移動(dòng)模型的Gmapping算法[J];計(jì)量與測(cè)試技術(shù);2016年10期
4 張毅;鄭瀟峰;羅元;龐冬雪;;基于高斯分布重采樣的Rao-Blackwellized粒子濾波SLAM算法[J];控制與決策;2016年12期
5 羅元;蘇琴;張毅;鄭瀟峰;;基于優(yōu)化RBPF的同時(shí)定位與地圖構(gòu)建[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期
6 任福繼;孫曉;;智能機(jī)器人的現(xiàn)狀及發(fā)展[J];科技導(dǎo)報(bào);2015年21期
7 張永澤;艾長(zhǎng)勝;張尉;;慣導(dǎo)與視覺相結(jié)合的AGV小車控制系統(tǒng)設(shè)計(jì)[J];山東工業(yè)技術(shù);2015年20期
8 羅元;傅有力;程鐵鳳;;基于改進(jìn)Rao-Blackwellized粒子濾波器的同時(shí)定位與地圖構(gòu)建[J];控制理論與應(yīng)用;2015年02期
9 王忠立;趙杰;蔡鶴皋;;大規(guī)模環(huán)境下基于圖優(yōu)化SLAM的圖構(gòu)建方法[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2015年01期
10 王法勝;魯明羽;趙清杰;袁澤劍;;粒子濾波算法[J];計(jì)算機(jī)學(xué)報(bào);2014年08期
相關(guān)博士學(xué)位論文 前1條
1 曲麗萍;移動(dòng)機(jī)器人同步定位與地圖構(gòu)建關(guān)鍵技術(shù)的研究[D];哈爾濱工程大學(xué);2013年
相關(guān)碩士學(xué)位論文 前6條
1 李昀澤;基于激光雷達(dá)的室內(nèi)機(jī)器人SLAM研究[D];華南理工大學(xué);2016年
2 朱福利;基于SLAM的移動(dòng)機(jī)器人室內(nèi)環(huán)境感知和地圖構(gòu)建研究[D];廣東工業(yè)大學(xué);2016年
3 梁瀟;基于激光與單目視覺融合的機(jī)器人室內(nèi)定位與制圖研究[D];哈爾濱工業(yè)大學(xué);2016年
4 邵長(zhǎng)勉;動(dòng)態(tài)環(huán)境下移動(dòng)機(jī)器人定位及地圖創(chuàng)建[D];南京郵電大學(xué);2014年
5 武玫;基于分布式粒子濾波的SLAM算法研究[D];北京工業(yè)大學(xué);2013年
6 劉輕塵;基于激光測(cè)距儀的救援機(jī)器人二維地圖實(shí)時(shí)創(chuàng)建技術(shù)研究[D];哈爾濱工程大學(xué);2013年
,本文編號(hào):2212800
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2212800.html