基于單證人節(jié)點(diǎn)的分布式節(jié)點(diǎn)復(fù)制攻擊檢測(cè)
發(fā)布時(shí)間:2018-04-28 04:26
本文選題:無線傳感網(wǎng)絡(luò) + 節(jié)點(diǎn)復(fù)制攻擊。 參考:《清華大學(xué)學(xué)報(bào)(自然科學(xué)版)》2017年09期
【摘要】:在無線傳感網(wǎng)絡(luò)中,現(xiàn)有的節(jié)點(diǎn)復(fù)制攻擊檢測(cè)方法存在檢測(cè)率低、通信消耗高、存儲(chǔ)消耗高等問題。該文提出一種基于單證人節(jié)點(diǎn)的分布式節(jié)點(diǎn)復(fù)制攻擊檢測(cè)(singlewitness-based distributed detection,SWDD)方法。SWDD方法分為選擇證人節(jié)點(diǎn)、生成聲明信息、發(fā)送聲明信息、驗(yàn)證證人節(jié)點(diǎn)和檢測(cè)復(fù)制節(jié)點(diǎn)5個(gè)步驟。SWDD方法中引入單證人節(jié)點(diǎn)選擇機(jī)制,采用隨機(jī)數(shù)作為位置聲明信息,利用多重映射機(jī)制進(jìn)行證人節(jié)點(diǎn)驗(yàn)證,并由最終證人節(jié)點(diǎn)完成對(duì)復(fù)制節(jié)點(diǎn)的檢測(cè)。在OMNeT++平臺(tái)上進(jìn)行仿真實(shí)驗(yàn),結(jié)果表明:SWDD方法在檢測(cè)率、通信消耗和存儲(chǔ)消耗方面均優(yōu)于SDC(single deterministic cell)和P-MPC(parallel multiple probabilistic cells)方法。
[Abstract]:In wireless sensor networks, existing node replication attack detection methods have low detection rate, high communication consumption and high storage consumption. This paper proposes a distributed node replication attack detection (singlewitness-based distributed detection, SWDD) method based on single witness node (.SWDD), which is divided into the selection of the witness nodes and the generation of sound. Clear information, send declarative information, verify the 5 steps of witness node and detection replication node, introduce the single person node selection mechanism, use random number as position declaration information, use multiple mapping mechanism to verify the witness node, and complete the detection of the replication node by the final witness node. Imitated on the OMNeT++ platform. True experiments, the results show that the SWDD method is superior to SDC (single deterministic cell) and P-MPC (parallel multiple probabilistic cells) in detection rate, communication consumption and storage consumption.
【作者單位】: 北京理工大學(xué)軟件學(xué)院軟件安全工程技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室;中國信息通信研究院技術(shù)與標(biāo)準(zhǔn)研究所互聯(lián)網(wǎng)中心;
【基金】:國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFB0800700)
【分類號(hào)】:TN915.08;TP212.9
,
本文編號(hào):1813755
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1813755.html
最近更新
教材專著