HEVC幀內(nèi)預(yù)測算法的優(yōu)化及FPGA實現(xiàn)
本文選題:HEVC + 視頻編碼。 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:相比于H.264視頻壓縮標(biāo)準(zhǔn),近期提出的新標(biāo)準(zhǔn)HEVC(High Efficiency Video Coding),在以增加計算復(fù)雜度為代價的前提下,壓縮效率提高了近50%。與此同時,復(fù)雜的算法也需要更好的設(shè)計方法來迎接高視頻分辨率帶來的挑戰(zhàn)。因此,對HEVC標(biāo)準(zhǔn)中的各部分功能的進(jìn)一步優(yōu)化具有非常重要的有意義。幀內(nèi)預(yù)測作為HEVC的一個重要組成部分,通過利用位于當(dāng)前編碼單元的左方以及上方的相鄰參考像素得到當(dāng)前塊的重建塊的過程。幀內(nèi)預(yù)測的復(fù)雜性主要體現(xiàn)在編碼單元結(jié)構(gòu)靈活性的增長和預(yù)測模式數(shù)量的增加。在參考模型HM中,采用了一種靈活的四叉樹塊劃分結(jié)構(gòu)對編碼單元進(jìn)行分割,根據(jù)不同區(qū)域紋理復(fù)雜度的不同,對于復(fù)雜度較高的預(yù)測單元采用較小的塊進(jìn)行預(yù)測編碼,反之采用較大的塊進(jìn)行編碼,在預(yù)測和轉(zhuǎn)換編碼過程中進(jìn)一步提高效率,同時在進(jìn)行模式選擇時為所有預(yù)測單元定義了35種模式。本課題主要對HEVC幀內(nèi)預(yù)測中編碼單元的劃分方式以及預(yù)測單元的模式選擇兩個方面展開研究。本文的主要研究內(nèi)容包括HEVC幀內(nèi)預(yù)測算法的HM實現(xiàn)和FPGA實現(xiàn)。本文利用Sobel算子對HEVC中編碼單元進(jìn)行劃分以及對預(yù)測單元的模式選擇進(jìn)行判斷,在HM中對算法進(jìn)行驗證。HM中的實現(xiàn)主要對編碼時間、率失真性能等方面進(jìn)行測試,并與HEVC標(biāo)準(zhǔn)進(jìn)行比較,驗證算法的優(yōu)越性。幀內(nèi)預(yù)測算法在FPGA上的實現(xiàn)用到了Xilinx Virtex6 ML605開發(fā)板,通過WinDriver驅(qū)動ML605板卡,在Win Driver生成的應(yīng)用層程序的調(diào)控下,圖像數(shù)據(jù)利用PCIE接口的DMA控制器從上位機(jī)傳入FPGA,接下來對導(dǎo)入的圖像數(shù)據(jù)進(jìn)行幀內(nèi)預(yù)測處理,最后將得到的預(yù)測圖像數(shù)據(jù)通過DMA傳送回上位機(jī),并用MATLAB對圖像數(shù)據(jù)進(jìn)行譯碼后觀察處理結(jié)果。幀內(nèi)預(yù)測算法的FPGA實現(xiàn)包括數(shù)據(jù)的存儲、圖像劃分、模式選擇、參考像素的處理、變換、量化、反變化、反量化等模塊的Verilog HDL實現(xiàn)。實驗結(jié)果表明,相對HEVC標(biāo)準(zhǔn),HEVC幀內(nèi)預(yù)測算法進(jìn)行優(yōu)化后,在保證圖像質(zhì)量及壓縮效率的同時,編碼時間有了大幅度的減少,并且完成了HEVC幀內(nèi)預(yù)測算法的FPGA實現(xiàn)對圖像進(jìn)行壓縮處理。
[Abstract]:Compared with H.264 video compression standard, the recently proposed new standard HEVC(High Efficiency Video coding improves the compression efficiency by nearly 50% at the cost of increasing computational complexity.At the same time, complex algorithms also need better design methods to meet the challenges of high video resolution.Therefore, it is very important to optimize the function of each part of HEVC standard.Intra-frame prediction is an important part of HEVC. The reconstruction block of the current block is obtained by using adjacent reference pixels located on the left side of the current coding unit as well as adjacent reference pixels above the current coding unit.The complexity of intra prediction is mainly reflected in the increase of coding unit structure flexibility and the increase in the number of prediction modes.In the reference model HM, a flexible quadtree block partition structure is used to segment the coding unit. According to the different texture complexity of different regions, the prediction unit with high complexity is predicted by smaller blocks.On the contrary, large blocks are used for coding, which can further improve the efficiency in the prediction and conversion coding process. At the same time, 35 patterns are defined for all prediction units in the process of mode selection.In this paper, the division of coding units in HEVC intra prediction and the mode selection of prediction units are studied.The main contents of this paper include HM implementation and FPGA implementation of HEVC intra prediction algorithm.In this paper, the coding unit in HEVC is divided by Sobel operator and the mode selection of prediction unit is judged. The implementation of the algorithm in HM is mainly tested on coding time, rate-distortion performance and so on.Compared with HEVC standard, the superiority of the algorithm is verified.The implementation of intra prediction algorithm on FPGA uses the Xilinx Virtex6 ML605 development board, which drives the ML605 card through WinDriver, under the control of the application layer program generated by Win Driver.The image data is passed into FPGA by the DMA controller of PCIE interface, then the imported image data is processed by intra prediction. Finally, the predicted image data is transmitted back to the host computer through DMA.The image data is decoded by MATLAB and the results are observed and processed.The FPGA implementation of intra prediction algorithm includes data storage, image partition, mode selection, processing of reference pixels, transformation, quantization, inverse change, inverse quantization and Verilog HDL implementation.The experimental results show that compared with the HEVC standard, the coding time is greatly reduced while the image quality and compression efficiency are guaranteed.And the FPGA implementation of HEVC intra prediction algorithm is completed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN919.81;TN791
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 楊宇航;蔡燦輝;王張欣;;利用紋理結(jié)構(gòu)的HEVC快速幀內(nèi)模式選擇算法[J];信號處理;2015年09期
2 李曉波;彭宗舉;陳芬;;基于紋理四叉樹的快速HEVC幀內(nèi)編碼算法[J];計算機(jī)工程;2014年12期
3 孫樂;戴明;李剛;陳曉露;王子辰;宋悅銘;;H.264壓縮域中mean-shift聚類運(yùn)動目標(biāo)分割算法[J];光電子.激光;2013年11期
4 李恒忠;崔建明;郭勇;李洪強(qiáng);;基于HEVC視頻標(biāo)準(zhǔn)的熵編碼過程[J];電腦知識與技術(shù);2013年14期
5 成益龍;滕國偉;石旭利;王國中;;一種快速HEVC幀內(nèi)預(yù)測算法[J];電視技術(shù);2012年21期
6 趙文強(qiáng);沈禮權(quán);張兆楊;;HEVC幀內(nèi)預(yù)測算法的優(yōu)化[J];電視技術(shù);2012年08期
7 王紅;喬永強(qiáng);王松梅;;用于運(yùn)動估計的全新自適應(yīng)一步一次搜索策略[J];計算機(jī)工程與應(yīng)用;2007年11期
相關(guān)博士學(xué)位論文 前1條
1 黃晗;HEVC幀間/幀內(nèi)預(yù)測及優(yōu)化技術(shù)研究[D];北京交通大學(xué);2014年
相關(guān)碩士學(xué)位論文 前1條
1 趙亮;HEVC幀內(nèi)模式?jīng)Q策及其核心技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2011年
,本文編號:1773020
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1773020.html