基于WSN的井下巷道定位算法研究
本文選題:WSN(Wireless + Sensor。 參考:《山東科技大學(xué)》2017年碩士論文
【摘要】:煤礦作為國民經(jīng)濟(jì)的命脈之一,是社會發(fā)展重要的推動力,但煤礦事故的頻發(fā)成為困擾民眾安全和行業(yè)發(fā)展的難題。由于煤礦井下環(huán)境的特殊性,井下作業(yè)人員隨時(shí)面臨危險(xiǎn),當(dāng)災(zāi)難發(fā)生的時(shí)候,準(zhǔn)確的井下人員信息是救援成功的先決條件。課題來源于山東省自然科學(xué)基金項(xiàng)目“井下自組織傳感器網(wǎng)絡(luò)的身份認(rèn)證及組網(wǎng)技術(shù)”。本課題以煤礦井下巷道內(nèi)龐大的通訊網(wǎng)絡(luò)為環(huán)境支撐,探討了巷道內(nèi)幾種常見的定位算法的適用性及優(yōu)缺點(diǎn),并在此基礎(chǔ)上提出了一種井下巷道匹配定位算法,主要研究內(nèi)容如下:1.論文比較了幾種常見的無線傳感器網(wǎng)絡(luò)定位算法,對其原理和實(shí)現(xiàn)方法等進(jìn)行了較為詳細(xì)的分析,并探討了指紋定位算法的特點(diǎn)。論文對井下巷道內(nèi)的定位算法的分析,為后續(xù)的井下定位算法的提出奠定了基礎(chǔ)。2.基于應(yīng)用需求分析,論文研究了井下定位的電磁環(huán)境特征,分析了多徑效應(yīng)對井下電磁波傳輸?shù)挠绊憽U撐耐ㄟ^對WSN的結(jié)構(gòu)的分析,探討了影響定位算法精度的因素。3.論文提出了一種適用于井下巷道復(fù)雜環(huán)境的定位算法,該算法包括兩個階段,即建庫階段和實(shí)時(shí)定位階段。在建庫階段,該算法為了解決建庫不準(zhǔn)確、復(fù)雜度高等問題,采用基于分類迭代的方法,利用采集的大量訓(xùn)練庫原始數(shù)據(jù)矢量,選取多個典型中心點(diǎn)的矢量構(gòu)成矢量集,進(jìn)而建立精確的數(shù)據(jù)矢量庫;在實(shí)時(shí)定位階段,將移動節(jié)點(diǎn)實(shí)時(shí)采集到的環(huán)境電磁數(shù)據(jù)矢量與矢量庫中各典型矢量進(jìn)行匹配運(yùn)算,找出與實(shí)時(shí)矢量最為相近的庫矢量,查詢該庫矢量對應(yīng)的點(diǎn)坐標(biāo),獲得定位結(jié)果。然后針對不同定位點(diǎn)的定位信息相似的問題,根據(jù)電磁波的傳播特性和井下實(shí)際的生產(chǎn)常識,提出了速度限制位置的方法,對定位結(jié)果進(jìn)行進(jìn)一步的處理。4.最后,論文基于井下匹配定位算法的基礎(chǔ)上,模擬井下巷道定位環(huán)境,采集樣本信息,建立數(shù)據(jù)矢量庫,對移動節(jié)點(diǎn)進(jìn)行定位。通過對傳統(tǒng)經(jīng)典的RSSI定位算法、井下指紋定位算法與本文提出的井下匹配定位算法的仿真對比得出結(jié)論:井下匹配定位算法能夠提高巷道內(nèi)對目標(biāo)節(jié)點(diǎn)的定位精度,滿足了井下實(shí)際生產(chǎn)中的安全要求。
[Abstract]:As one of the lifeblood of the national economy, coal mine is an important driving force for social development, but the frequent occurrence of coal mine accidents has become a difficult problem for the safety of the people and the development of the industry.Due to the particularity of the underground environment, the underground operators are faced with danger at any time. When the disaster occurs, accurate underground personnel information is a prerequisite for successful rescue.The subject comes from Shandong natural science foundation project "identity authentication and networking technology of underground self-organizing sensor network".Based on the huge communication network in underground roadway, this paper discusses the applicability, advantages and disadvantages of several common localization algorithms in roadway, and puts forward a matching localization algorithm for underground roadway.The main research contents are as follows: 1.This paper compares several common wireless sensor network localization algorithms, analyzes its principle and implementation methods in detail, and discusses the characteristics of fingerprint location algorithm.This paper analyzes the localization algorithm in underground roadway, which lays a foundation for further underground localization algorithm.Based on the application requirement analysis, the paper studies the electromagnetic environment characteristics of downhole positioning, and analyzes the influence of multipath effect on underground electromagnetic wave transmission.By analyzing the structure of WSN, this paper discusses the factors that affect the accuracy of the localization algorithm.In this paper, a localization algorithm for complex underground tunnel environment is proposed. The algorithm consists of two stages, namely, the stage of building database and the stage of real-time location.In order to solve the problems of inaccuracy and high complexity in building the database, the algorithm adopts the method based on classification iteration, uses a large number of original data vectors collected from the training database, and selects the vectors of several typical center points to form the vector set.Then the accurate data vector library is established, and in the real-time positioning stage, the environment electromagnetic data vector collected by the mobile node is matched with each typical vector in the vector library, and the library vector that is most close to the real-time vector is found out.The point coordinates corresponding to the library vector are queried and the location results are obtained.Then, aiming at the problem of similar location information of different positioning points, according to the propagation characteristics of electromagnetic wave and practical production common sense of underground, the method of velocity limiting position is put forward, and the location result is further processed. 4.Finally, based on the algorithm of underground matching location, this paper simulates the location environment of underground roadway, collects the sample information, establishes the data vector database, and locates the mobile nodes.By comparing the traditional RSSI localization algorithm, the fingerprint location algorithm and the matching algorithm proposed in this paper, it is concluded that the underground matching algorithm can improve the positioning accuracy of the target nodes in the roadway.Meet the safety requirements of downhole production.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN929.5;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 靳晶晶;;基于幅頻矢量感知井下定位系統(tǒng)的設(shè)計(jì)[J];煤;2017年02期
2 崔麗珍;康凱;赫佳星;史明泉;;井下巷道事故監(jiān)測定位的研究與實(shí)現(xiàn)[J];計(jì)算機(jī)仿真;2016年12期
3 馬鑫迪;馬建峰;高勝;;室內(nèi)定位系統(tǒng)中指紋庫的優(yōu)化方法[J];西安電子科技大學(xué)學(xué)報(bào);2015年06期
4 董君;李吉彪;;基于煤礦井下WSN的RSSI加權(quán)質(zhì)心定位算法研究[J];河南機(jī)電高等?茖W(xué)校學(xué)報(bào);2015年01期
5 呂文紅;楊濤;董曉亮;鄭小霞;鄒慧;梁泉泉;;基于SVM分類的煤礦井下人員指紋定位算法[J];煤炭科學(xué)技術(shù);2014年11期
6 郭銀景;鄭小霞;宋文燦;張露;董曉亮;;基于幅頻矢量匹配的DV-hop定位算法優(yōu)化[J];山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
7 李論;丁恩杰;郝麗娜;張雷;;一種改進(jìn)的煤礦井下指紋定位匹配算法[J];傳感技術(shù)學(xué)報(bào);2014年03期
8 毛少武;張煥國;黃崇超;吳萬青;;改進(jìn)的K最短路徑算法在通信網(wǎng)絡(luò)中的應(yīng)用[J];武漢大學(xué)學(xué)報(bào)(理學(xué)版);2013年06期
9 韓江洪;祝滿拳;馬學(xué)森;劉會平;;基于RSSI的極大似然與加權(quán)質(zhì)心混合定位算法[J];電子測量與儀器學(xué)報(bào);2013年10期
10 丁恩杰;喬欣;常飛;喬莉;;基于RSSI的WSNs加權(quán)質(zhì)心定位算法的改進(jìn)[J];傳感器與微系統(tǒng);2013年07期
相關(guān)博士學(xué)位論文 前1條
1 張明華;基于WLAN的室內(nèi)定位技術(shù)研究[D];上海交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前9條
1 張揚(yáng)勇;基于RSSI的ZigBee無線傳感器網(wǎng)絡(luò)定位算法[D];廣東工業(yè)大學(xué);2015年
2 王麗娜;基于Wi-Fi的煤礦井下人員定位技術(shù)研究[D];河南理工大學(xué);2015年
3 高銀;狹長直隧道內(nèi)無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)定位算法的研究[D];江西理工大學(xué);2014年
4 胡純伏;井下無線傳感器網(wǎng)絡(luò)定位算法研究[D];太原科技大學(xué);2013年
5 韓泉城;基于WSN的機(jī)器人高精度室內(nèi)定位跟蹤系統(tǒng)[D];東北大學(xué);2012年
6 趙慶偉;基于WSN的煤礦井下定位算法研究[D];河北工程大學(xué);2012年
7 高勁強(qiáng);礦井無線通信系統(tǒng)中電磁信號傳輸及通信網(wǎng)絡(luò)設(shè)計(jì)[D];太原理工大學(xué);2012年
8 劉瑞玲;煤礦井下人員實(shí)時(shí)定位系統(tǒng)的抗干擾性研究[D];河南理工大學(xué);2009年
9 左正;基于無線傳感器網(wǎng)絡(luò)的井下定位系統(tǒng)研究[D];合肥工業(yè)大學(xué);2008年
,本文編號:1754700
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1754700.html