微電網(wǎng)通信無(wú)線傳感器網(wǎng)絡(luò)鏈路質(zhì)量預(yù)測(cè)與控制研究
本文選題:微電網(wǎng) 切入點(diǎn):無(wú)線傳感器網(wǎng)絡(luò) 出處:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:鏈路質(zhì)量是微電網(wǎng)通信無(wú)線傳感器網(wǎng)絡(luò)領(lǐng)域的研究熱點(diǎn)之一。無(wú)線鏈路質(zhì)量所具有的非線性以及非平穩(wěn)隨機(jī)特性是難以對(duì)其可靠性實(shí)現(xiàn)精確預(yù)測(cè)與控制的難點(diǎn)。針對(duì)這一問(wèn)題,本文提出一種基于小波神經(jīng)網(wǎng)絡(luò)的無(wú)線通信鏈路可靠性置信區(qū)間預(yù)測(cè)算法和基于模糊控制理論的鏈路可靠性控制算法。通過(guò)對(duì)無(wú)線通信鏈路質(zhì)量的解耦預(yù)處理,將鏈路質(zhì)量的非線性部分和非平穩(wěn)隨機(jī)性部分分離后,構(gòu)建小波神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型,并根據(jù)預(yù)測(cè)結(jié)果,采用模糊控制模型和方法,對(duì)節(jié)點(diǎn)發(fā)射功率進(jìn)行控制,以提高鏈路質(zhì)量的穩(wěn)定性和可靠性。本文主要工作如下:1、以微電網(wǎng)對(duì)通信網(wǎng)絡(luò)的可靠性需求為控制目標(biāo),分析了微電網(wǎng)中無(wú)線傳感器網(wǎng)絡(luò)通信服務(wù)質(zhì)量的特點(diǎn),無(wú)線通信鏈路可靠性的影響因素,以及無(wú)線通信鏈路的數(shù)學(xué)模型。2、結(jié)合無(wú)線通信鏈路數(shù)學(xué)模型,分析了鏈路質(zhì)量指標(biāo)和無(wú)線通信鏈路質(zhì)量中所具有的耦合成分,提出了無(wú)線通信鏈路可靠性置信區(qū)間預(yù)測(cè)算法結(jié)構(gòu),并分別研究了該算法結(jié)構(gòu)中由信噪比表征的鏈路質(zhì)量近似解耦算法和基于小波神經(jīng)網(wǎng)絡(luò)的鏈路質(zhì)量置信區(qū)間預(yù)測(cè)算法。在微電網(wǎng)環(huán)境中對(duì)提出的無(wú)線通信鏈路可靠性置信區(qū)間預(yù)測(cè)算法進(jìn)行仿真測(cè)試,并與卡爾曼預(yù)測(cè)、BP神經(jīng)網(wǎng)絡(luò)以及ARIMA預(yù)測(cè)算法進(jìn)行對(duì)比,驗(yàn)證了本文所提算法的可行性與優(yōu)越性。3、根據(jù)無(wú)線通信鏈路可靠性置信區(qū)間預(yù)測(cè)結(jié)果,提出了一種無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)功率控制系統(tǒng)結(jié)構(gòu),研究了基于模糊控制的微電網(wǎng)無(wú)線傳感器網(wǎng)絡(luò)通信鏈路質(zhì)量可靠性優(yōu)化控制算法。并通過(guò)微電網(wǎng)環(huán)境中的測(cè)試,驗(yàn)證了提出的優(yōu)化控制結(jié)果的穩(wěn)定性和可靠性。4、在太陽(yáng)能發(fā)電微電網(wǎng)系統(tǒng)的無(wú)線傳感器網(wǎng)絡(luò)通信系統(tǒng)中,測(cè)試了本文提出的無(wú)線傳感器網(wǎng)絡(luò)鏈路質(zhì)量預(yù)測(cè)算法以及功率模糊控制算法。結(jié)果表明,本文提出的無(wú)線通信鏈路可靠性置信區(qū)間預(yù)測(cè)算法和基于模糊控制的無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)功率控制算法可以實(shí)時(shí)準(zhǔn)確地預(yù)測(cè)下一時(shí)刻鏈路質(zhì)量的置信區(qū)間界限,并通過(guò)調(diào)節(jié)節(jié)點(diǎn)發(fā)射功率實(shí)現(xiàn)鏈路質(zhì)量可靠性的平穩(wěn)控制。
[Abstract]:Link quality is one of the hotspots in wireless sensor networks for microgrid communication.The nonlinear and non-stationary random characteristics of wireless link quality are difficult to accurately predict and control its reliability.To solve this problem, this paper presents a prediction algorithm for reliability confidence interval of wireless communication link based on wavelet neural network and a link reliability control algorithm based on fuzzy control theory.By decoupling the link quality, the nonlinear part of the link quality is separated from the non-stationary part of the link quality, and the prediction model of wavelet neural network is constructed. According to the prediction results, the fuzzy control model and method are adopted.The transmission power is controlled to improve the stability and reliability of the link quality.The main work of this paper is as follows: 1. Aiming at the requirement of communication network reliability in microgrid, this paper analyzes the characteristics of wireless sensor network communication quality of service and the influencing factors of wireless communication link reliability.And the mathematical model of wireless communication link. 2. Combining with the mathematical model of wireless communication link, the link quality index and the coupling component of wireless communication link quality are analyzed.In this paper, the structure of link reliability confidence interval prediction algorithm for wireless communication is proposed, and the link quality approximate decoupling algorithm and the link quality confidence interval prediction algorithm based on wavelet neural network are studied respectively.In the microgrid environment, the proposed confidence interval prediction algorithm for wireless communication link reliability is simulated and tested, and compared with Kalman prediction BP neural network and ARIMA prediction algorithm.The feasibility and superiority of the proposed algorithm are verified. According to the prediction results of reliability confidence interval of wireless communication link, a structure of node power control system for wireless sensor network is proposed.An optimal quality control algorithm for wireless sensor network communication link based on fuzzy control is studied.The stability and reliability of the proposed optimal control results are verified by testing in the microgrid environment, which is used in the wireless sensor network communication system of the solar power microgrid system.The proposed link quality prediction algorithm and power fuzzy control algorithm are tested.The results show that the proposed confidence interval prediction algorithm for wireless link reliability and the node power control algorithm for wireless sensor networks based on fuzzy control can predict the confidence interval limits of link quality at the next moment in real time and accurately.The steady control of link quality reliability is realized by adjusting the transmit power of the node.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM727;TN929.5;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁超;谷慶博;劉大林;;無(wú)線傳感器網(wǎng)絡(luò)應(yīng)用技術(shù)研究[J];科技經(jīng)濟(jì)導(dǎo)刊;2016年07期
2 馬建生;金志強(qiáng);姜光;徐力;丁峰;付小霞;;室內(nèi)無(wú)線通信系統(tǒng)的路徑損耗模型研究[J];信息通信;2016年01期
3 麥軍;鄧巧茵;萬(wàn)智萍;;基于CC2530的ZigBee無(wú)線組網(wǎng)溫度監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)[J];電子設(shè)計(jì)工程;2015年22期
4 李獻(xiàn)偉;李保恩;王鵬;;微電網(wǎng)技術(shù)現(xiàn)狀及未來(lái)發(fā)展分析[J];通信電源技術(shù);2015年05期
5 江祥奎;馬超男;;自適應(yīng)小波神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法及其應(yīng)用[J];計(jì)算機(jī)與數(shù)字工程;2015年09期
6 闞杰;張瑞瑞;陳立平;徐剛;;基于BP神經(jīng)網(wǎng)絡(luò)的傳感器網(wǎng)絡(luò)動(dòng)態(tài)采樣模型研究[J];計(jì)算機(jī)測(cè)量與控制;2015年07期
7 卞寶銀;李秀彩;黃鑫;;變電站無(wú)線通信模型研究及應(yīng)用分析[J];電氣應(yīng)用;2015年13期
8 楊智;段鵬斌;;一種基于模糊控制的溫度控制器設(shè)計(jì)[J];工業(yè)儀表與自動(dòng)化裝置;2015年03期
9 邵奇可;馮淑娜;毛科技;;面向WSN的自適應(yīng)模糊功率控制算法研究[J];傳感技術(shù)學(xué)報(bào);2015年04期
10 曾創(chuàng)展;賈鑫;朱衛(wèi)綱;;通信信號(hào)調(diào)制方式識(shí)別方法綜述[J];通信技術(shù);2015年03期
,本文編號(hào):1720636
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1720636.html