靜電除塵用脈沖電源技術(shù)研究
本文選題:靜電除塵 切入點(diǎn):反電暈 出處:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:靜電除塵器被廣泛應(yīng)用于工業(yè)廢氣處理領(lǐng)域,在眾多除塵方法中,其具有簡(jiǎn)單、高效及易于維護(hù)等諸多優(yōu)點(diǎn)而廣受業(yè)界好評(píng)。我國(guó)的靜電工業(yè)靜電除塵器于八九十年代由歐美等工業(yè)除塵開(kāi)展較早的國(guó)家引入,其廢氣排放標(biāo)準(zhǔn)多為50~200mg/Nm3,早已不能滿足當(dāng)下出臺(tái)的嚴(yán)格標(biāo)準(zhǔn),靜電除塵器的革新勢(shì)在必行。相較于傳統(tǒng)的工頻電源及高頻電源,脈沖除塵器利用高壓脈沖短時(shí)間內(nèi)使粉塵荷電,更容易清除細(xì)微粒特別是高比電阻細(xì)微粒粉塵,有效抑制反電暈,實(shí)現(xiàn)廢氣低排放;同時(shí)脈沖電源更節(jié)能,是國(guó)內(nèi)外靜電除塵領(lǐng)域的研究熱點(diǎn)。首先,本文針對(duì)靜電除塵器的負(fù)載特性和除塵效率影響因素做研究,通過(guò)對(duì)空氣放電特性、非穩(wěn)態(tài)靜電除塵理論的研究,得到最優(yōu)供電電壓、電暈電流密度的數(shù)學(xué)表達(dá)式;通過(guò)對(duì)粉塵比電阻、高比電阻粉塵收集過(guò)程的研究解釋了直流電源的局限性及脈沖電源的優(yōu)勢(shì);通過(guò)研究直流疊加脈沖電場(chǎng)中粉塵的運(yùn)動(dòng),優(yōu)化了多依奇除塵效率公式;為脈沖電源的設(shè)計(jì)提供理論依據(jù)。其次,本文針對(duì)直流疊加脈沖電源高壓側(cè)電源提出了一種新直流疊加脈沖電源的設(shè)計(jì)方法。通過(guò)建立其數(shù)學(xué)模型,采用拉普拉斯變換對(duì)數(shù)學(xué)模型進(jìn)行解析,分別對(duì)正常工作、閃絡(luò)及火花狀態(tài)進(jìn)行模態(tài)分析,得到正常與極端情況電壓與電流的數(shù)量關(guān)系;通過(guò)對(duì)正常工作模態(tài)的諧振狀態(tài)和震蕩狀態(tài)的數(shù)學(xué)解析、標(biāo)幺化及參數(shù)影響特性分析,設(shè)計(jì)電路中的重要參數(shù),形成直流疊加脈沖電源設(shè)計(jì)的理論基礎(chǔ)。再次,本文針對(duì)直流疊加脈沖電源的供電電源進(jìn)行研究。選用全橋LCC拓?fù)渥鳛檠芯繉?duì)象,由于高頻高壓變壓器存在較大寄生參數(shù),且寄生參數(shù)的大小與變壓器參數(shù)及繞制工藝存在聯(lián)系;因此,采用LCC諧振利用高頻高壓變壓器的寄生參數(shù),使開(kāi)關(guān)器件工作在軟開(kāi)關(guān)狀態(tài)。深入研究其DCM兩種模式,對(duì)比分析平均輸出電流、諧振電流峰值、調(diào)壓特性、軟開(kāi)關(guān)特性等,得到電源關(guān)鍵參數(shù)的設(shè)計(jì)依據(jù)及DCM-1模式更適用于高壓靜電除塵場(chǎng)合的結(jié)論。最后,本文分別搭建了小型直流疊加脈沖靜電除塵系統(tǒng)和LCC供電電源進(jìn)行系統(tǒng)實(shí)驗(yàn)驗(yàn)證。對(duì)直流疊加脈沖電源及LCC供電電源分別通過(guò)系統(tǒng)參數(shù)設(shè)計(jì),軟件仿真、和硬件實(shí)驗(yàn)驗(yàn)證等環(huán)節(jié),驗(yàn)證直流疊加脈沖電源及LCC供電電源系統(tǒng)理論分析的正確性及系統(tǒng)可行性,實(shí)驗(yàn)波形與仿真及設(shè)計(jì)預(yù)期基本相符,標(biāo)志著理論分析的正確性和設(shè)計(jì)方法的可行性。本文工作為應(yīng)用于靜電除塵領(lǐng)域的直流疊加脈沖靜電除塵器提供了理論分析與設(shè)計(jì)方法,對(duì)于直流疊加脈沖靜電除塵電源系統(tǒng)在除塵器領(lǐng)域中的應(yīng)用具有一定的意義和參考價(jià)值。
[Abstract]:Electrostatic precipitator (ESP) is widely used in the field of industrial waste gas treatment. In many dust removal methods, it has many advantages, such as simple, efficient and easy to maintain.The electrostatic precipitator in our country was introduced by Europe and America in 1980s and 1990s, and its exhaust gas emission standard is mostly 50 ~ 200mg / Nm ~ 3, which can not meet the strict standard, so the innovation of electrostatic precipitator is imperative.Compared with the traditional power supply and high frequency power supply, the pulse dust collector can charge the dust in a short period of time by using the high voltage pulse, it is easier to remove fine particles, especially the fine particle dust with high specific resistance, effectively restrain the corona back, and realize the low emission of waste gas.At the same time, pulse power supply is more energy-saving, is the domestic and foreign electrostatic dust field research hot spot.Firstly, this paper studies the load characteristics of electrostatic precipitator and the influencing factors of dust removal efficiency. The mathematical expressions of optimal power supply voltage and corona current density are obtained by studying the characteristics of air discharge and the theory of unsteady electrostatic dust collection.The limitation of DC power supply and the advantages of pulse power supply are explained through the research of dust specific resistance and high specific resistance dust collection process, and the formula of dust removal efficiency is optimized by studying the movement of dust in DC superposition pulse electric field.It provides theoretical basis for the design of pulse power supply.Secondly, this paper presents a new design method of DC superposition pulse power supply for high voltage side power supply.The mathematical model is established and the Laplace transform is used to analyze the mathematical model. The modal analysis of normal operation flashover and spark state is carried out respectively and the quantitative relationship between voltage and current in normal and extreme cases is obtained.Through the mathematical analysis of the resonance state and oscillation state of the normal working mode, the analysis of the standardization and the influence characteristics of the parameters, and the design of important parameters in the circuit, the theoretical basis of the design of DC superposition pulse power supply is formed.Thirdly, this paper studies the power supply of DC superposition pulse power supply.The full-bridge LCC topology is chosen as the research object. Because there are large parasitic parameters in high-frequency and high-voltage transformers, and the size of parasitic parameters is related to transformer parameters and winding process, therefore,Using LCC resonance, the parasitic parameters of high frequency and high voltage transformer are used to make the switching device work in soft switching state.In this paper, two DCM modes are studied, and the average output current, resonant current peak value, voltage regulation characteristic and soft switching characteristic are compared and analyzed. The design basis of the key parameters of the power supply and the conclusion that DCM-1 mode is more suitable for electrostatic dust removal at high voltage are obtained.Finally, a small DC superposition pulse electrostatic dust removal system and a LCC power supply are built to verify the system.The correctness and feasibility of theoretical analysis of DC superposition pulse power supply and LCC power supply system are verified by system parameter design, software simulation, and hardware experiment verification for DC superposition pulse power supply and LCC power supply.The experimental waveform is basically consistent with the simulation and design expectation, which indicates the correctness of theoretical analysis and the feasibility of design method.This paper provides a theoretical analysis and design method for DC superimposed pulse electrostatic precipitator used in electrostatic dust collection field.It has certain significance and reference value for the application of DC superposition pulse electrostatic dust collection power system in the field of dust collector.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN86
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 鄧艷梅;彭朝釗;劉俊;周程;李博;何孟兵;;電除塵器的脈沖電源研究[J];強(qiáng)激光與粒子束;2016年05期
2 雷盼靈;曾慶軍;陳峰;;靜電除塵用新型脈沖高壓電源研究[J];科學(xué)技術(shù)與工程;2014年31期
3 張子生;李延虎;李冠;白津?qū)?;基于PLC的火電廠電除塵器振打控制的研究[J];計(jì)算機(jī)測(cè)量與控制;2012年07期
4 林元哲;賈俊川;石新春;;高壓電除塵器的效率與節(jié)能技術(shù)[J];電氣應(yīng)用;2012年08期
5 張谷勛;蔣云峰;;電除塵器電源的發(fā)展方向——高頻化和數(shù)字化[J];電源世界;2007年01期
6 唐敏康,葉青,張永亮;電除塵器中粉塵粒子的力學(xué)行為分析[J];江西有色金屬;2003年04期
7 姜雨澤,趙金先;窄脈沖放電粒子荷電過(guò)程分析[J];山東電力技術(shù);2003年04期
相關(guān)會(huì)議論文 前1條
1 薛穎;;中外靜電除塵器改造比較[A];第十五屆中國(guó)電除塵學(xué)術(shù)會(huì)議論文集[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 劉軍;LCC-SPRC高壓高頻大功率電除塵電源的理論分析與功率參數(shù)設(shè)計(jì)[D];浙江大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 劉沛然;高壓高頻靜電除塵電源的研究[D];華北電力大學(xué);2014年
2 吳晟;高效節(jié)能徑向直葉片濕式除塵器研究[D];中南大學(xué);2012年
3 周曉明;火電行業(yè)二氧化硫排放量預(yù)測(cè)研究[D];華北電力大學(xué);2011年
4 王紅艷;新型工頻恒流型靜電除塵電源研究[D];華中科技大學(xué);2011年
5 陳鵬;靜電除塵器除塵效率影響因素的研究[D];東北大學(xué) ;2009年
6 官威;靜電除塵器諧振軟開(kāi)關(guān)高頻高壓電源的設(shè)計(jì)與實(shí)現(xiàn)[D];浙江大學(xué);2008年
7 郭國(guó)強(qiáng);基于DSP控制的電除塵用高頻高壓開(kāi)關(guān)電源[D];浙江大學(xué);2008年
8 何建劍;電除塵用高頻高壓開(kāi)關(guān)電源[D];浙江大學(xué);2007年
,本文編號(hào):1715306
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1715306.html