自適應小波閾值去噪算法在低空飛行聲目標的應用
發(fā)布時間:2018-03-21 18:45
本文選題:小波去噪 切入點:閾值函數(shù) 出處:《振動與沖擊》2017年09期 論文類型:期刊論文
【摘要】:近年來,低空飛行聲目標的探測與識別已得到軍事領域的重點關注,而如何濾除信號中的背景噪聲并準確保留信號的有效特征信息是該領域的一個難點。在研究小波去噪算法特點的基礎上,針對低空飛行聲目標信號的噪聲特性,構建了一個新的閾值函數(shù),通過自適應調整閾值函數(shù)實現(xiàn)在小波分解細尺度和寬尺度上對噪聲信號最大限度的濾除,同時,運用香農熵理論來判斷最優(yōu)層數(shù)。通過大量的實驗仿真驗證,并與傳統(tǒng)閾值去噪算法比較分析,結果表明該算法對去噪指標SNR有較大尺度的提高,可以更好的去除噪聲,并對低空聲目標信號去噪有很好的去噪效果。
[Abstract]:In recent years, the detection and recognition of low altitude acoustic targets has been paid more and more attention in the military field. However, how to filter the background noise from the signal and accurately retain the effective characteristic information of the signal is a difficulty in this field. Based on the study of the characteristics of the wavelet denoising algorithm, the noise characteristics of the low-altitude flight acoustic target signal are studied. A new threshold function is constructed, which adaptively adjusts the threshold function to maximize the filtering of the noise signal on the wavelet decomposition scale and the wide scale. At the same time, The Shannon entropy theory is used to determine the optimal number of layers. A large number of experiments are carried out and compared with the traditional threshold denoising algorithm. The results show that the algorithm can improve the denoising index SNR in a large scale and can remove noise better. And it has good denoising effect for low altitude acoustic target signal.
【作者單位】: 蘭州理工大學電氣工程與信息工程學院;蘭州理工大學理學院;95876部隊;
【基金】:國家自然科學基金(61663024)
【分類號】:TN911.4
,
本文編號:1645091
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1645091.html
最近更新
教材專著