稀疏降噪自編碼器在IR-BCI的應(yīng)用研究
發(fā)布時間:2018-03-09 16:35
本文選題:模擬閱讀 切入點:腦-機接口 出處:《計算機工程與應(yīng)用》2017年11期 論文類型:期刊論文
【摘要】:針對腦-機接口的特征提取問題,提出了一種基于非監(jiān)督學習的稀疏降噪自編碼器,對刺激誘發(fā)的腦電信號進行自主學習,構(gòu)建原始數(shù)據(jù)的深層特征表達。該編碼器引用稀疏自編碼神經(jīng)網(wǎng)絡(luò),通過加入噪聲,增強其學習的泛化能力,增加了神經(jīng)網(wǎng)絡(luò)的魯棒性。首先對多導聯(lián)信號進行重新拼接,輸入稀疏降噪自編碼器,得到原始數(shù)據(jù)的稀疏特征表達;然后,采用支持向量機將學習到的特征進行分類;最后,同直接使用最優(yōu)單通道相對比。實驗結(jié)果為:稀疏降噪自編碼器的分類準確率要優(yōu)于單通道,表明該方法能夠更好地學習到特征,并提高了"模擬閱讀"腦-機接口的識別正確率,為腦-機接口系統(tǒng)的特征提取和分類提供了新思路。
[Abstract]:To solve the problem of feature extraction of brain-computer interface, a sparse de-noising self-encoder based on unsupervised learning is proposed, which can be used for autonomous learning of stimulus-induced EEG signals. The encoder uses sparse self-coding neural network to enhance its learning generalization ability and enhance the robustness of neural network by adding noise. Firstly, the multi-lead signal is reassembled. Input sparse denoising self-encoder to obtain sparse feature representation of the original data; then, support vector machine will be used to classify the features learned; finally, The experimental results show that the classification accuracy of sparse noise reduction self-encoder is better than that of single channel. The recognition accuracy of "simulated reading" brain-computer interface is improved, which provides a new idea for feature extraction and classification of brain-computer interface system.
【作者單位】: 中南民族大學醫(yī)學信息分析及腫瘤診療湖北省重點實驗室;中南民族大學認知科學國家民委重點實驗室;
【基金】:國家自然科學基金(No.91120017,No.81271659) 中央高;究蒲袠I(yè)務(wù)費資助項目(No.CZY13031)
【分類號】:TN762;TN911.7;TP18
,
本文編號:1589349
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1589349.html
最近更新
教材專著