RHIC能區(qū)金核-金核對(duì)撞中重味夸克衰變電子橢圓流和激發(fā)態(tài)粲介子產(chǎn)生的測(cè)量
發(fā)布時(shí)間:2022-07-15 14:23
格點(diǎn)量子色動(dòng)力學(xué)(QCD)計(jì)算表明極端相對(duì)論重離子對(duì)撞產(chǎn)生的高溫環(huán)境會(huì)導(dǎo)致核物質(zhì)中夸克和膠子的解禁閉,形成一種具有部分子自由度的新的物質(zhì)形態(tài)——夸克膠子等離子體(Quark Gluon Plasma,QGP)。QGP是研究強(qiáng)相互作用的理想實(shí)驗(yàn)室。相對(duì)論重離子對(duì)撞實(shí)驗(yàn)的一個(gè)重要目標(biāo)就是尋找QGP,并研究它的特性。重味夸克(粲夸克和底夸克)是研究QGP早期動(dòng)力學(xué)性質(zhì)的一個(gè)獨(dú)特的探針。由于質(zhì)量遠(yuǎn)大于QCD能標(biāo)和QGP的典型溫度,重味夸克在相對(duì)論重離子碰撞中主要產(chǎn)生于QGP形成之前的初始硬散射過(guò)程。該過(guò)程可以用微擾QCD計(jì)算。當(dāng)QGP形成之后,重味夸克與QGP發(fā)生相互作用,并隨著QGP的冷卻而強(qiáng)子化。通過(guò)測(cè)量末態(tài)重味強(qiáng)子的產(chǎn)生,可以研究重味夸克與QGP的相互作用,并進(jìn)而研究QGP的特性。由于其熱化時(shí)間與QGP的壽命相當(dāng)甚至更長(zhǎng),末態(tài)重味強(qiáng)子攜帶了重味夸克與QGP的作用歷史信息。因此,重味夸克是研究QGP性質(zhì)的一種“穿越探針”(Penetrating Probe)。本論文圍繞RHIC能區(qū)相對(duì)論重離子碰撞中重味強(qiáng)子的產(chǎn)生開(kāi)展了三部分工作:1)STAR實(shí)驗(yàn)54.4與27 GeV金核-金核對(duì)撞中重味衰...
【文章頁(yè)數(shù)】:159 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 The elementary particles and interactions
1.2 Quantum Chromodynamics
1.2.1 The running coupling
1.2.2 Approach to solving QCD
1.3 QCD phase transition and QGP
1.4 Relativistic heavy ion collisions
1.4.1 Collision geometry
1.4.2 Space-time evolution of the collision
1.4.3 Experimental observable
1.5 Motivation of open heavy flavor measurements
1.5.1 Collectivity-Heavy flavor electron v2
1.5.2 Energy loss-D~(*+) production
1.5.3 Hadronization-simulation of Λ_c~+ production
Chapter 2 Experimental set up
2.1 The Relativistic Heavy Ion Collider
2.2 The STAR detector
2.3 Time Projection Chamber
2.4 Time Of Flight detector
2.5 Heavy Flavor Tracker
Chapter 3 Measurements of elliptic flow of heavy flavor electrons
3.1 Overview of the analysis
3.2 Data set and event selection
3.3 Inclusive electron selection and purity calculation
3.3.1 Track selection
3.3.2 Inclusive electron identification
3.3.3 Electron purity study
3.4 Photonic electron tagging
3.5 Photonic electron reconstruction efficiency
3.5.1 Photonic electron embedding
3.5.2 Embedding QA and Systematic uncertainties
3.5.3 Check on the bump structure in efficiency plots
3.5.4 Reconstruction efficiency results
3.6 Inclusive electron v_2
3.7 Photonic electron v_2
3.7.1 Photonic electron v_2 simulation
3.7.2 Systematic uncertainty of photonic electron v_2
3.8 Non-photonic electron v_2 and systematic uncertainty
3.9 Non-flow estimation
3.10 Appendix
Chapter 4 Measurements of D~(*+) production in Au+Au 200 GeVcollisions
4.1 Data Sets and Event selection
4.2 D~0 reconstruction
4.2.1 Track selection and particle identification
4.2.2 D~0 decay topology
4.3 D~(*+) reconstruction
4.4 D* efficiency correction
4.4.1 π_s efficiency
4.4.2 D~0 reconstruction efficiency
4.4.3 D~0 double counting effect
4.4.4 Vertex resolution correction
4.4.5 D~(*+) efficiency
4.5 D~(*+)/D~0 ratio
4.6 Systematic uncertainty
Chapter 5 Results and discussion
5.1 e~(HF) v_2 at low energy-charm quark collectivity
5.1.1 The energy dependence of e~(HF) v_2
5.1.2 Comparison on the p_T dependence of e~(HF) and identified particles v_2
5.1.3 Model comparison
5.1.4 Outlook of this analysis
5.2 D~(*+) production-charm quark energy loss
5.2.1 D~(*+) spectra
5.2.2 D~(*+)/D~0 ratio
5.3 Summary
5.3.1 Low momentum-Diffusion
5.3.2 Low to intermediate momentum-Hadronization
5.3.3 Intermediate to high momentum-Energy loss
5.3.4 Perspective
Chapter 6 Outlook-Future heavy flavor program at RHIC
6.1 The sPHENIX detector
6.2 MVTX detector and heavy flavor program at sPHENIX
6.3 Λ_c~+ production at sPHENIX
6.3.1 Introduction
6.3.2 Overview of simulation approach
6.3.3 sPHENIX detector performance
6.3.4 Signal
6.3.5 Combinatorial background
6.3.6 PID scenario
6.3.7 Λ_c~+ reconstruction
6.3.8 Results and discussion
6.3.9 Summary
Bibliography
Acknowledgements(致謝)
Publications and Presentations List
本文編號(hào):3662215
【文章頁(yè)數(shù)】:159 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 The elementary particles and interactions
1.2 Quantum Chromodynamics
1.2.1 The running coupling
1.2.2 Approach to solving QCD
1.3 QCD phase transition and QGP
1.4 Relativistic heavy ion collisions
1.4.1 Collision geometry
1.4.2 Space-time evolution of the collision
1.4.3 Experimental observable
1.5 Motivation of open heavy flavor measurements
1.5.1 Collectivity-Heavy flavor electron v2
1.5.2 Energy loss-D~(*+) production
1.5.3 Hadronization-simulation of Λ_c~+ production
Chapter 2 Experimental set up
2.1 The Relativistic Heavy Ion Collider
2.2 The STAR detector
2.3 Time Projection Chamber
2.4 Time Of Flight detector
2.5 Heavy Flavor Tracker
Chapter 3 Measurements of elliptic flow of heavy flavor electrons
3.1 Overview of the analysis
3.2 Data set and event selection
3.3 Inclusive electron selection and purity calculation
3.3.1 Track selection
3.3.2 Inclusive electron identification
3.3.3 Electron purity study
3.4 Photonic electron tagging
3.5 Photonic electron reconstruction efficiency
3.5.1 Photonic electron embedding
3.5.2 Embedding QA and Systematic uncertainties
3.5.3 Check on the bump structure in efficiency plots
3.5.4 Reconstruction efficiency results
3.6 Inclusive electron v_2
3.7 Photonic electron v_2
3.7.1 Photonic electron v_2 simulation
3.7.2 Systematic uncertainty of photonic electron v_2
3.8 Non-photonic electron v_2 and systematic uncertainty
3.9 Non-flow estimation
3.10 Appendix
Chapter 4 Measurements of D~(*+) production in Au+Au 200 GeVcollisions
4.1 Data Sets and Event selection
4.2 D~0 reconstruction
4.2.1 Track selection and particle identification
4.2.2 D~0 decay topology
4.3 D~(*+) reconstruction
4.4 D* efficiency correction
4.4.1 π_s efficiency
4.4.2 D~0 reconstruction efficiency
4.4.3 D~0 double counting effect
4.4.4 Vertex resolution correction
4.4.5 D~(*+) efficiency
4.5 D~(*+)/D~0 ratio
4.6 Systematic uncertainty
Chapter 5 Results and discussion
5.1 e~(HF) v_2 at low energy-charm quark collectivity
5.1.1 The energy dependence of e~(HF) v_2
5.1.2 Comparison on the p_T dependence of e~(HF) and identified particles v_2
5.1.3 Model comparison
5.1.4 Outlook of this analysis
5.2 D~(*+) production-charm quark energy loss
5.2.1 D~(*+) spectra
5.2.2 D~(*+)/D~0 ratio
5.3 Summary
5.3.1 Low momentum-Diffusion
5.3.2 Low to intermediate momentum-Hadronization
5.3.3 Intermediate to high momentum-Energy loss
5.3.4 Perspective
Chapter 6 Outlook-Future heavy flavor program at RHIC
6.1 The sPHENIX detector
6.2 MVTX detector and heavy flavor program at sPHENIX
6.3 Λ_c~+ production at sPHENIX
6.3.1 Introduction
6.3.2 Overview of simulation approach
6.3.3 sPHENIX detector performance
6.3.4 Signal
6.3.5 Combinatorial background
6.3.6 PID scenario
6.3.7 Λ_c~+ reconstruction
6.3.8 Results and discussion
6.3.9 Summary
Bibliography
Acknowledgements(致謝)
Publications and Presentations List
本文編號(hào):3662215
本文鏈接:http://sikaile.net/kejilunwen/wulilw/3662215.html
最近更新
教材專(zhuān)著