固體電子發(fā)射產(chǎn)額的蒙特卡洛模擬研究
發(fā)布時(shí)間:2021-05-19 12:30
自1950年代以來,人們已經(jīng)在電子發(fā)射的相關(guān)領(lǐng)域進(jìn)行了深入的實(shí)驗(yàn)研究,特別是能量分布、二次電子產(chǎn)額(SEY)以及背散射系數(shù)(BSC)。由不同研究人員測(cè)得的數(shù)據(jù)結(jié)果差異較大,因?yàn)槠渲幸恍⿺?shù)據(jù)不是在超高真空條件下測(cè)得的,因此表面污染可能通過功函數(shù)和電子親和勢(shì)的變化顯著影響SEY和BSC。由于來自清潔表面的精確實(shí)驗(yàn)測(cè)量的可用數(shù)據(jù)非常有限,與二次電子級(jí)聯(lián)產(chǎn)生和發(fā)射過程的相關(guān)機(jī)理仍未完全研究透徹。而且對(duì)于很多化合物材料的數(shù)據(jù)依然缺失,盡管它們具有廣泛的實(shí)際應(yīng)用?紤]到近年來電子-固體相互作用的理論模型已經(jīng)取得了顯著的研究進(jìn)展,因此非常有必要對(duì)化合物材料/單質(zhì)材料固體進(jìn)行模擬研究,以得出更可靠的理論數(shù)據(jù)。本文基于先進(jìn)的蒙特卡洛模型,研究了單質(zhì)和化合物半導(dǎo)體材料在不同入射電子能量下的背散射系數(shù)、二次電子產(chǎn)額和總電子產(chǎn)額進(jìn)行了系統(tǒng)的蒙特卡洛模擬計(jì)算。本文還對(duì)這些材料中激發(fā)和發(fā)射的二次電子在不同入射能量下的激發(fā)深度分布函數(shù)、發(fā)射深度分布函數(shù)及在深度分布函數(shù)中的組合效應(yīng)進(jìn)行了計(jì)算。如GaAs等半導(dǎo)體材料已廣泛用于光伏材料中,二次電子產(chǎn)額是掃描電子顯微表征的重要參數(shù),尤其是針對(duì)最近開發(fā)的掃描超快電子顯微鏡,...
【文章來源】:中國科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁數(shù)】:175 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Overview of the interaction between the electron beam and solid
1.1.1 Secondary electron
1.1.2 Backscattered electron
1.1.3 Auger electron
1.1.4 Elastic peak electrons
1.2 Different peaks on the complete energy spectrum
1.2.1 Losses peaks of electron energy
1.2.2 Auger electron peaks
1.2.3 Secondary electron peak
1.3 Principles and development in scanning electron microscopy
1.4 Factors affecting electron yields
1.4.1 External adsorption of atoms and ions
1.4.2 Work function and electron affinity
1.4.3 Temperature and phonon excitations
1.4.4 Surface and bulk plasmon decay
1.4.5 Thickness of the surface
1.4.6 Primary electron incident directions
1.4.7 Surface effects
1.4.8 Emission of the electrons from the adsorbed atoms
1.5 Angular distribution of the backscattered electrons
Chapter 2 Monte Carlo Simulation of Electron Transport
2.1 Theoretical overview of electron interaction with solid
2.1.1 Single-electron excitation
2.1.2 Plasmon excitation
2.1.3 Phonon excitation
2.1.4 Bremsstrahlung
2.2 Basic characteristics of cross-sections
2.3 Elastic scattering of electrons
2.4 Inelastic scattering of electrons
2.4.1 Energy loss function
2.4.2 Differential inverse inelastic mean free path
2.4.3 Inelastic mean free path
2.4.4 Sum rules
2.4.5 Secondary electron cascade process
2.5 Monte Carlo method and principles
2.6 Monte Carlo simulation procedures
2.7 Secondary electron generation and emission
2.8 Auger electron excitation
Chapter 3 Electron Backscattering Coefficient of Beryllium
3.1 Introduction
3.2 Mott elastic scattering cross section for Be, B and C-allotropes
3.2.1 Differential scattering cross section
3.2.2 Total scattering cross-section
3.2.3 Electron elastic mean free path
3.3 Electron inelastic scattering cross section of Be,B and C-allotropes
3.3.1 Energy loss functions
3.3.2 Sum rules
3.3.3 Inelastic mean free paths
3.4 Energy spectra of backscattered electrons
3.5 Backscattering coefficients
3.6 Effect of surface contaminations
3.7 Penetration depth dependence
3.8 Incident angle dependence
3.9 Angular distribution
Chapter 4 Calculation of the Mean Escape Depth of Secondary Electrons
4.1 Introduction
4.2 Theoretical background
4.3 Sum rule
4.4 Energy loss functions
4.5 Definition of depth distribution functions
4.6 Secondary electron energy distribution
4.7 Excitation depth distribution function
4.8 Emission depth distribution function
4.9 Partial depth distribution function
4.10 Simulated depth distribution function
4.11 Mean excitation depth and mean emission depth
Chapter 5 Electron Yields from Compound Semiconductor Materials
5.1 Introduction
5.2 Monte Carlo model
5.3 Mean atomic numbers
5.4 Energy loss functions and sum rules
5.5 Effect of the depletion layer
5.6 Energy spectra of secondary electrons
5.7 Energy spectra of backscattered electrons
5.8 Backscattering coefficients
5.9 Secondary electron yields
Chapter 6 Electron Backscattering Coefficients of Iron and Tungsten
6.1 Introduction
6.2 Theoretical background
6.3 Backscattered electron energy spectra
6.4 Backscattering coefficient
6.5 Effect of surface contamination
6.6 Penetration depth dependence
6.7 Angular distribution
Chapter 7 Summary
Publications
International conference attended
References
Acknowledgment
【參考文獻(xiàn)】:
博士論文
[1]二次電子發(fā)射的Monte Carlo模擬及應(yīng)用[D]. 鄒艷波.中國科學(xué)技術(shù)大學(xué) 2017
本文編號(hào):3195775
【文章來源】:中國科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁數(shù)】:175 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Overview of the interaction between the electron beam and solid
1.1.1 Secondary electron
1.1.2 Backscattered electron
1.1.3 Auger electron
1.1.4 Elastic peak electrons
1.2 Different peaks on the complete energy spectrum
1.2.1 Losses peaks of electron energy
1.2.2 Auger electron peaks
1.2.3 Secondary electron peak
1.3 Principles and development in scanning electron microscopy
1.4 Factors affecting electron yields
1.4.1 External adsorption of atoms and ions
1.4.2 Work function and electron affinity
1.4.3 Temperature and phonon excitations
1.4.4 Surface and bulk plasmon decay
1.4.5 Thickness of the surface
1.4.6 Primary electron incident directions
1.4.7 Surface effects
1.4.8 Emission of the electrons from the adsorbed atoms
1.5 Angular distribution of the backscattered electrons
Chapter 2 Monte Carlo Simulation of Electron Transport
2.1 Theoretical overview of electron interaction with solid
2.1.1 Single-electron excitation
2.1.2 Plasmon excitation
2.1.3 Phonon excitation
2.1.4 Bremsstrahlung
2.2 Basic characteristics of cross-sections
2.3 Elastic scattering of electrons
2.4 Inelastic scattering of electrons
2.4.1 Energy loss function
2.4.2 Differential inverse inelastic mean free path
2.4.3 Inelastic mean free path
2.4.4 Sum rules
2.4.5 Secondary electron cascade process
2.5 Monte Carlo method and principles
2.6 Monte Carlo simulation procedures
2.7 Secondary electron generation and emission
2.8 Auger electron excitation
Chapter 3 Electron Backscattering Coefficient of Beryllium
3.1 Introduction
3.2 Mott elastic scattering cross section for Be, B and C-allotropes
3.2.1 Differential scattering cross section
3.2.2 Total scattering cross-section
3.2.3 Electron elastic mean free path
3.3 Electron inelastic scattering cross section of Be,B and C-allotropes
3.3.1 Energy loss functions
3.3.2 Sum rules
3.3.3 Inelastic mean free paths
3.4 Energy spectra of backscattered electrons
3.5 Backscattering coefficients
3.6 Effect of surface contaminations
3.7 Penetration depth dependence
3.8 Incident angle dependence
3.9 Angular distribution
Chapter 4 Calculation of the Mean Escape Depth of Secondary Electrons
4.1 Introduction
4.2 Theoretical background
4.3 Sum rule
4.4 Energy loss functions
4.5 Definition of depth distribution functions
4.6 Secondary electron energy distribution
4.7 Excitation depth distribution function
4.8 Emission depth distribution function
4.9 Partial depth distribution function
4.10 Simulated depth distribution function
4.11 Mean excitation depth and mean emission depth
Chapter 5 Electron Yields from Compound Semiconductor Materials
5.1 Introduction
5.2 Monte Carlo model
5.3 Mean atomic numbers
5.4 Energy loss functions and sum rules
5.5 Effect of the depletion layer
5.6 Energy spectra of secondary electrons
5.7 Energy spectra of backscattered electrons
5.8 Backscattering coefficients
5.9 Secondary electron yields
Chapter 6 Electron Backscattering Coefficients of Iron and Tungsten
6.1 Introduction
6.2 Theoretical background
6.3 Backscattered electron energy spectra
6.4 Backscattering coefficient
6.5 Effect of surface contamination
6.6 Penetration depth dependence
6.7 Angular distribution
Chapter 7 Summary
Publications
International conference attended
References
Acknowledgment
【參考文獻(xiàn)】:
博士論文
[1]二次電子發(fā)射的Monte Carlo模擬及應(yīng)用[D]. 鄒艷波.中國科學(xué)技術(shù)大學(xué) 2017
本文編號(hào):3195775
本文鏈接:http://sikaile.net/kejilunwen/wulilw/3195775.html
最近更新
教材專著