天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 天文學論文 >

銀河系移動星群Group1、2、3元素的天體物理來源研究

發(fā)布時間:2018-10-13 17:45
【摘要】:觀測表明,銀河系移動星群Group1、2、3恒星的α元素(O、Mg、Si、Ca、Ti)、鐵族元素(Sc、V、Cr、Fe、Co、Ni)和中子俘獲元素(Y、Zr、Ba、La、Ce、Pr、Nd,Sm、Eu)豐度比隨[Fe/H]變化趨勢不同。為了尋找Group 1、2、3恒星的α元素、鐵族元素和中子俘獲元素豐度趨勢的天體物理原因,在本文中我們通過五分量元素豐度模型擬合了這些恒星α元素,鐵族元素和中子俘獲元素的豐度,并分析了這些元素的天體物理來源。計算結(jié)果表明,對于[Fe/H]-0.4的情況,主要r-過程和primary過程分量的貢獻隨金屬豐度的增大呈平坦趨勢,而對于[Fe/H]-0.4的情況,主要r-過程和primary過程相對貢獻隨金屬豐度的增大呈下降趨勢;主要s-過程、Ia型超新星和secondary過程的貢獻隨金屬豐度的增大呈上升趨勢。由于O元素是一個“純”primary過程元素,因此對于[Fe/H]-0.4的情況,[O/Fe]隨著金屬豐度的增長而單調(diào)下降。其他α元素Mg、Si、Ca、Ti的主要天體物理來源也是大質(zhì)量星primary過程。以Mg元素為例,對于[Fe/H]-0.4的情況,[Mg/Fe]隨[Fe/H]呈平坦趨勢;但對于[Fe/H]-0.4的情況,大質(zhì)量星secondary過程分量貢獻隨金屬豐度的增加而增大,導致[Mg/Fe]下降趨勢較為平緩。相對α元素而言,鐵族元素的天體物理來源要復雜一些。以Cr元素為例,對于[Fe/H]-0.4的情況,[Cr/Fe]隨[Fe/H]的增加呈平坦趨勢,其原因是這些元素的主要天體物理來源是大質(zhì)量星primary過程;而對于[Fe/H]-0.4的情況,Ia型超新星的貢獻隨金屬豐度的增加而逐漸增大,補償了大質(zhì)量星primary過程豐度比的下降,從而使所以元素[Cr/Fe]呈平坦趨勢。對于中子俘獲元素而言,以Y、Ba和Eu元素為例,在[Fe/H]-0.4的情況下,Y的豐度比隨金屬豐度的增加呈平坦趨勢,因為Y的天體物理來源是弱r-過程,而弱r-過程的產(chǎn)量具有primary特性;對于[Fe/H]-0.4的情況,弱r-過程相對貢獻隨[Fe/H]的增加呈下降趨勢,主要s-過程分量貢獻隨金屬豐度的增加而增大補償了弱r-過程的下降使[Y/Fe]仍呈平坦趨勢。對于[Fe/H]-0.4的情況,[Ba/Fe]隨[Fe/H]的增大呈平坦趨勢,其原因是Ba的主要天體物理來源是主要r-過程,而主要r-過程的產(chǎn)量具有primary特性。對于[Fe/H]-0.4的情況,[Ba/Fe]隨[Fe/H]的增大呈上升趨勢,其原因是主要s-過程貢獻隨[Fe/H]的增加而增大。對于[Fe/H]-0.4的情況,[Eu/Fe]隨[Fe/H]的增加呈現(xiàn)平坦趨勢,其原因是Eu元素的主要天體物理來源始終是主要r-過程;而對于高金屬豐度的情況,[Eu/Fe]呈下降趨勢,其原因是主要r-過程豐度比隨[Fe/H]的增大呈下降趨勢。本文把O元素看作一個標準元素代替Fe元素,這時,大質(zhì)量星primary過程和主要r-過程分量比呈平坦趨勢,具有primary特性,而主要s-過程、大質(zhì)量星secondary過程分量和Ia超新星的分量比呈上升趨勢。由于α元素Mg為例,在較低金屬豐度情況下,[Mg/O]隨金屬豐度的增加呈平坦趨勢;而在高金屬豐度的情況下,大質(zhì)量星secondary過程分量比隨[Fe/H]的增大而增大,從而導致在較高金屬豐度情況下[Mg/O]呈上升趨勢。對于α元素而言,鐵族元素的天體物理來源要復雜一些,以Cr元素為例,對于[Fe/H]-0.4的情況下,[Cr/O]隨[Fe/H]的增大呈平坦趨勢,其原因是Cr的主要天體物理來源是大質(zhì)量星primary分量;而對于[Fe/H]-0.4的情況,[Cr/O]呈平坦趨勢,是因為Ia型超新星的補償效應。對于較輕中子俘獲元素而言,以Y,Ba和Eu元素為例,在[Fe/H]-0.4的情況下,[Y/O]隨[Fe/H]的增大呈平坦趨勢,其原因是Y元素的主要天體物理來源是弱r-過程分量,而弱r-過程具有primary特性;對于[Fe/H]-0.4的情況,[Y/O]隨[Fe/H]呈上升趨勢,其天體物理原因是主要s-過程對Y元素的貢獻隨[Fe/H]的增大而逐漸增大并超過弱r-分量過程貢獻。對于[Fe/H]-0.4的情況,[Ba/O]隨[Fe/H]的增大呈平坦趨勢,其原因是Ba的主要天體物理來源是主要r-過程和主要s-過程貢獻,二者幾乎不隨金屬豐度變化。對于[Fe/H]-0.4的情況,[Ba/O]呈上升趨勢,其原因是主要s-過程對Ba元素的貢獻隨[Fe/H]的增大而增大并超過主要r-過程的貢獻。[Eu/O]隨[Fe/H]的增大呈平坦趨勢,其原因是Eu元素的主要天體物理來源是主要r-過程。
[Abstract]:The observation shows that the abundance ratio of elements (O, Mg, Si, Ca, Ti), Fe family elements (Sc, V, Cr, Fe, Co, Ni) and neutron capture elements (Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu) in the moving star group Group1, 2 and 3 of the Milky Way is different from that of[Fe/ H]. In order to find the astrophysical cause of the geochemical element, iron family element and neutron capture element abundance trend of Group 1, 2, 3 stars, we fit the abundance of these star elements, iron family elements and neutron capture elements by five-element abundance model in this paper. The physical sources of these elements are analyzed and analyzed. The results show that for[Fe/ H]-0.4, the contribution of the main r-process and primary process components varies with the increase of metal abundance, whereas for[Fe/ H]-0.4, the relative contribution of the main r-process and primary process decreases with the increase of metal abundance; the main s-process, The contribution of type Ia supernova and secondary process increases with the increase of metal abundance. since the o element is one, "Pure" The primary process element, therefore, for[Fe/ H]-0.4,[O/ Fe] decreases monotonically with increasing metal abundance. The main physical source of other elements Mg, Si, Ca and Ti is also the primary process of large mass star. In the case of[Fe/ H]-0.4, Mg/ Fe has a flat tendency with[Fe/ H]. However, in the case of[Fe/ H]-0.4, the contribution of the large mass star secondary process component increases with the increase of the metal abundance, leading to a more gradual decrease in[Mg/ Fe]. For relatively small elements, the astrophysical source of the iron-family elements is complex. In the case of[Fe/ H]-0.4, Cr/ Fe has a flat tendency with the increase of[Fe/ H]-0.4. The reason is that the main physical source of these elements is the primary process of large mass star; and for[Fe/ H]-0.4, the contribution of type Ia supernovae gradually increases with the increase of metal abundance, The decrease of the abundance ratio of the large mass star primary process is compensated, so that the element[Cr/ Fe] has a flat tendency. For neutron capture elements, in the case of[Fe/ H]-0.4, Y, Ba and Eu elements are in a flat tendency in the[Fe/ H]-0.4, because the physical source of the celestial body of Y is the weak r-process, while the yield of the weak r-process has primary characteristics; for the case of[Fe/ H]-0.4, The relative contribution of weak r-process decreases with the increase of[Fe/ H]. The contribution of main s-process components increases with the increase of metal abundance, and the decrease of weak r-process makes[Y/ Fe] still flat. In the case of[Fe/ H]-0.4,[Ba/ Fe] has a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Ba is the main r-process, while the yield of the main r-process is primary. For[Fe/ H]-0.4,[Ba/ Fe] increases with the increase of[Fe/ H]. The reason is that the main s-process contribution increases with the increase of[Fe/ H]. In the case of[Fe/ H]-0.4,[Eu/ Fe] exhibits a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Eu element is always the main r-process; while for the case of high metal abundance,[Eu/ Fe] exhibits a decreasing tendency. The reason is that the main r-process abundance ratio decreases with the increase of[Fe/ H]. In this paper, the O element is regarded as a standard element instead of the Fe element. At this time, the primary process and the main r-process component ratio of the large mass star have a flat tendency, and have the primary characteristic, while the main s-process, the large mass star secondary process component and the component ratio of the Ia supernova are on the rise. in that case of low metal abundance,[Mg/ O] increases with the increase of metal abundance in the case of low metal abundance, and in the case of high metal abundance, the large mass star secondary process component ratio increases with the increase of[Fe/ H], resulting in an upward trend in[mg/ o] in the case of higher metal abundance. In the case of Fe/ H[Fe/ H]-0.4,[Cr/ O] has a flat tendency with[Fe/ H]. The reason is that the main physical source of Cr is the primary component of large mass star; and for the case of[Fe/ H]-0.4,[Cr/ O] has a flat tendency because of the compensation effect of type Ia supernovae. For lighter neutron capture elements, Y, Ba and Eu elements are in an example, in the case of[Fe/ H]-0.4,[Y/ O] becomes a flat tendency with[Fe/ H]. The reason is that the main physical source of the Y element is the weak r-process component, and the weak r-process has the primary characteristic. In the case of[Fe/ H]-0.4,[Y/ O] increases with[Fe/ H], whose physical reason is that the contribution of the main s-process to the Y element gradually increases with[Fe/ H] and exceeds the weak r-component process contribution. In the case of[Fe/ H]-0.4,[Ba/ O] has a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Ba is the main r-process and the main s-process contribution, and the two do not change with the metal abundance. In the case of[Fe/ H]-0.4,[Ba/ O] is on the rise, and the reason is that the contribution of the main s-process to the Ba element increases with[Fe/ H] and exceeds the contribution of the main r-process.[Eu/ O] has a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Eu element is the main r-process.
【學位授予單位】:河北師范大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:P156

【相似文獻】

相關期刊論文 前10條

1 史菲;劉玉燕;;星系金屬豐度的計算方法[J];北華航天工業(yè)學院學報;2012年04期

2 崔辰州,陳玉琴,趙剛,趙永恒;銀盤恒星的金屬豐度梯度[J];中國科學(A輯);2002年08期

3 周貴德;;低金屬豐度下重元素豐度比分布彌散探究[J];滄州師范學院學報;2013年02期

4 李冀;孫建安;付瑞娟;;銀盤恒星的金屬豐度與軌道參數(shù)的關系[J];中國科學:物理學 力學 天文學;2010年03期

5 張華偉,趙剛;銀河系金屬豐度及其演化研究新進展[J];天文學進展;2000年02期

6 梁艷春;HAMMER Francois;鄧李才;趙剛;;星系金屬豐度的研究進展(Ⅰ):定標方法[J];天文學進展;2006年04期

7 梁波;李冀;曹藏文;范緯世;趙剛;;銀盤恒星的年齡-金屬豐度關系研究[J];天文學進展;2008年03期

8 唐仕奎,李宗偉,趙剛,陳玉琴,邱紅梅;有行星系統(tǒng)恒星的金屬豐度研究[J];北京師范大學學報(自然科學版);2001年01期

9 全亞民,張波,周貴德;AGB星重疊因子的計算與分析[J];河北師范大學學報;2005年01期

10 侯金良,常瑞香;銀盤的徑向金屬豐度梯度[J];天文學進展;2001年01期

相關會議論文 前1條

1 盧宇;姜碧溈;;基于2mass星表對球狀星團的金屬豐度的分析[A];中國天文學會恒星分會2004年學術年會論文集[C];2004年

相關重要報紙文章 前2條

1 張夢然;美發(fā)現(xiàn)大爆炸數(shù)分鐘后原始氣體云[N];科技日報;2011年

2 華凌;銀河系可能“由內(nèi)而外”形成[N];科技日報;2014年

相關博士學位論文 前1條

1 史菲;星系金屬豐度及化學演化的研究[D];中國科學技術大學;2006年

相關碩士學位論文 前5條

1 姚瑤;銀河系移動星群Group1、2、3元素的天體物理來源研究[D];河北師范大學;2016年

2 梁波;不同星族恒星的年齡—金屬豐度關系[D];河北師范大學;2008年

3 張書會;基于LAMOST DR2的太陽附近G矮星的金屬豐度分布函數(shù)[D];上海師范大學;2015年

4 尹少英;利用SDSS光譜數(shù)據(jù)研究恒星形成星系的金屬豐度[D];河北師范大學;2007年

5 佟默旬;M型矮星的分類和金屬豐度[D];河北師范大學;2013年

,

本文編號:2269424

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/tianwen/2269424.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶fa833***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com