銀河系移動(dòng)星群Group1、2、3元素的天體物理來(lái)源研究
[Abstract]:The observation shows that the abundance ratio of elements (O, Mg, Si, Ca, Ti), Fe family elements (Sc, V, Cr, Fe, Co, Ni) and neutron capture elements (Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu) in the moving star group Group1, 2 and 3 of the Milky Way is different from that of[Fe/ H]. In order to find the astrophysical cause of the geochemical element, iron family element and neutron capture element abundance trend of Group 1, 2, 3 stars, we fit the abundance of these star elements, iron family elements and neutron capture elements by five-element abundance model in this paper. The physical sources of these elements are analyzed and analyzed. The results show that for[Fe/ H]-0.4, the contribution of the main r-process and primary process components varies with the increase of metal abundance, whereas for[Fe/ H]-0.4, the relative contribution of the main r-process and primary process decreases with the increase of metal abundance; the main s-process, The contribution of type Ia supernova and secondary process increases with the increase of metal abundance. since the o element is one, "Pure" The primary process element, therefore, for[Fe/ H]-0.4,[O/ Fe] decreases monotonically with increasing metal abundance. The main physical source of other elements Mg, Si, Ca and Ti is also the primary process of large mass star. In the case of[Fe/ H]-0.4, Mg/ Fe has a flat tendency with[Fe/ H]. However, in the case of[Fe/ H]-0.4, the contribution of the large mass star secondary process component increases with the increase of the metal abundance, leading to a more gradual decrease in[Mg/ Fe]. For relatively small elements, the astrophysical source of the iron-family elements is complex. In the case of[Fe/ H]-0.4, Cr/ Fe has a flat tendency with the increase of[Fe/ H]-0.4. The reason is that the main physical source of these elements is the primary process of large mass star; and for[Fe/ H]-0.4, the contribution of type Ia supernovae gradually increases with the increase of metal abundance, The decrease of the abundance ratio of the large mass star primary process is compensated, so that the element[Cr/ Fe] has a flat tendency. For neutron capture elements, in the case of[Fe/ H]-0.4, Y, Ba and Eu elements are in a flat tendency in the[Fe/ H]-0.4, because the physical source of the celestial body of Y is the weak r-process, while the yield of the weak r-process has primary characteristics; for the case of[Fe/ H]-0.4, The relative contribution of weak r-process decreases with the increase of[Fe/ H]. The contribution of main s-process components increases with the increase of metal abundance, and the decrease of weak r-process makes[Y/ Fe] still flat. In the case of[Fe/ H]-0.4,[Ba/ Fe] has a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Ba is the main r-process, while the yield of the main r-process is primary. For[Fe/ H]-0.4,[Ba/ Fe] increases with the increase of[Fe/ H]. The reason is that the main s-process contribution increases with the increase of[Fe/ H]. In the case of[Fe/ H]-0.4,[Eu/ Fe] exhibits a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Eu element is always the main r-process; while for the case of high metal abundance,[Eu/ Fe] exhibits a decreasing tendency. The reason is that the main r-process abundance ratio decreases with the increase of[Fe/ H]. In this paper, the O element is regarded as a standard element instead of the Fe element. At this time, the primary process and the main r-process component ratio of the large mass star have a flat tendency, and have the primary characteristic, while the main s-process, the large mass star secondary process component and the component ratio of the Ia supernova are on the rise. in that case of low metal abundance,[Mg/ O] increases with the increase of metal abundance in the case of low metal abundance, and in the case of high metal abundance, the large mass star secondary process component ratio increases with the increase of[Fe/ H], resulting in an upward trend in[mg/ o] in the case of higher metal abundance. In the case of Fe/ H[Fe/ H]-0.4,[Cr/ O] has a flat tendency with[Fe/ H]. The reason is that the main physical source of Cr is the primary component of large mass star; and for the case of[Fe/ H]-0.4,[Cr/ O] has a flat tendency because of the compensation effect of type Ia supernovae. For lighter neutron capture elements, Y, Ba and Eu elements are in an example, in the case of[Fe/ H]-0.4,[Y/ O] becomes a flat tendency with[Fe/ H]. The reason is that the main physical source of the Y element is the weak r-process component, and the weak r-process has the primary characteristic. In the case of[Fe/ H]-0.4,[Y/ O] increases with[Fe/ H], whose physical reason is that the contribution of the main s-process to the Y element gradually increases with[Fe/ H] and exceeds the weak r-component process contribution. In the case of[Fe/ H]-0.4,[Ba/ O] has a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Ba is the main r-process and the main s-process contribution, and the two do not change with the metal abundance. In the case of[Fe/ H]-0.4,[Ba/ O] is on the rise, and the reason is that the contribution of the main s-process to the Ba element increases with[Fe/ H] and exceeds the contribution of the main r-process.[Eu/ O] has a flat tendency with the increase of[Fe/ H]. The reason is that the main physical source of Eu element is the main r-process.
【學(xué)位授予單位】:河北師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:P156
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 史菲;劉玉燕;;星系金屬豐度的計(jì)算方法[J];北華航天工業(yè)學(xué)院學(xué)報(bào);2012年04期
2 崔辰州,陳玉琴,趙剛,趙永恒;銀盤恒星的金屬豐度梯度[J];中國(guó)科學(xué)(A輯);2002年08期
3 周貴德;;低金屬豐度下重元素豐度比分布彌散探究[J];滄州師范學(xué)院學(xué)報(bào);2013年02期
4 李冀;孫建安;付瑞娟;;銀盤恒星的金屬豐度與軌道參數(shù)的關(guān)系[J];中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué);2010年03期
5 張華偉,趙剛;銀河系金屬豐度及其演化研究新進(jìn)展[J];天文學(xué)進(jìn)展;2000年02期
6 梁艷春;HAMMER Francois;鄧?yán)畈?趙剛;;星系金屬豐度的研究進(jìn)展(Ⅰ):定標(biāo)方法[J];天文學(xué)進(jìn)展;2006年04期
7 梁波;李冀;曹藏文;范緯世;趙剛;;銀盤恒星的年齡-金屬豐度關(guān)系研究[J];天文學(xué)進(jìn)展;2008年03期
8 唐仕奎,李宗偉,趙剛,陳玉琴,邱紅梅;有行星系統(tǒng)恒星的金屬豐度研究[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期
9 全亞民,張波,周貴德;AGB星重疊因子的計(jì)算與分析[J];河北師范大學(xué)學(xué)報(bào);2005年01期
10 侯金良,常瑞香;銀盤的徑向金屬豐度梯度[J];天文學(xué)進(jìn)展;2001年01期
相關(guān)會(huì)議論文 前1條
1 盧宇;姜碧溈;;基于2mass星表對(duì)球狀星團(tuán)的金屬豐度的分析[A];中國(guó)天文學(xué)會(huì)恒星分會(huì)2004年學(xué)術(shù)年會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前2條
1 張夢(mèng)然;美發(fā)現(xiàn)大爆炸數(shù)分鐘后原始?xì)怏w云[N];科技日?qǐng)?bào);2011年
2 華凌;銀河系可能“由內(nèi)而外”形成[N];科技日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前1條
1 史菲;星系金屬豐度及化學(xué)演化的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前5條
1 姚瑤;銀河系移動(dòng)星群Group1、2、3元素的天體物理來(lái)源研究[D];河北師范大學(xué);2016年
2 梁波;不同星族恒星的年齡—金屬豐度關(guān)系[D];河北師范大學(xué);2008年
3 張書會(huì);基于LAMOST DR2的太陽(yáng)附近G矮星的金屬豐度分布函數(shù)[D];上海師范大學(xué);2015年
4 尹少英;利用SDSS光譜數(shù)據(jù)研究恒星形成星系的金屬豐度[D];河北師范大學(xué);2007年
5 佟默旬;M型矮星的分類和金屬豐度[D];河北師范大學(xué);2013年
,本文編號(hào):2269424
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2269424.html