基于協(xié)同過(guò)濾算法的音樂(lè)推薦系統(tǒng)
[Abstract]:With the continuous development of network technology in recent years, the growth of information on the Internet presents an explosive speed, such a huge amount of information to users have brought difficulties in retrieval, the traditional search engine technology is difficult to meet the needs of users. Under the background that the existing technology can not meet the needs, collaborative filtering system has developed into a hot research spot in the recommended city. Collaborative filtering algorithms are divided into two categories: memory-based collaborative filtering and model-based collaborative filtering. It is a kind of recommendation based on a series of users or items of the same interest. It generates a list of recommendations to target users according to the preference information of neighboring users. In this paper, after comparing the experimental results of the two data sets, we choose the item-based correction cosine similarity algorithm as the collaborative filtering algorithm for our music recommendation system. To some extent, this algorithm makes up for the shortcomings of the traditional recommendation methods. At the same time, this paper makes a detailed analysis of the existing music recommendation system by combining the advantages of the collaborative filtering recommendation algorithm. Finally, the software prototype of the individual music recommendation system is realized by using the B / S software structure. In this paper, the user satisfaction of the music recommendation prototype system is evaluated, and the usability of the system is tested. Through the evaluation of the recommended results we find that the overall performance of the system is good and can effectively recommend the results that the users may be interested in to a certain extent and basically reach the expected goal of the system design.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 趙亮,胡乃靜,張守志;個(gè)性化推薦算法設(shè)計(jì)[J];計(jì)算機(jī)研究與發(fā)展;2002年08期
2 余力,劉魯;電子商務(wù)個(gè)性化推薦研究[J];計(jì)算機(jī)集成制造系統(tǒng);2004年10期
3 吳顏;沈潔;顧天竺;陳曉紅;李慧;張舒;;協(xié)同過(guò)濾推薦系統(tǒng)中數(shù)據(jù)稀疏問(wèn)題的解決[J];計(jì)算機(jī)應(yīng)用研究;2007年06期
4 鄧愛(ài)林,朱揚(yáng)勇,施伯樂(lè);基于項(xiàng)目評(píng)分預(yù)測(cè)的協(xié)同過(guò)濾推薦算法[J];軟件學(xué)報(bào);2003年09期
5 徐蘭芳;胡懷飛;桑子夏;徐鳳鳴;鄒德清;;基于灰色系統(tǒng)理論的信譽(yù)報(bào)告機(jī)制[J];軟件學(xué)報(bào);2007年07期
6 馬宏偉;張光衛(wèi);李鵬;;協(xié)同過(guò)濾推薦算法綜述[J];小型微型計(jì)算機(jī)系統(tǒng);2009年07期
相關(guān)博士學(xué)位論文 前2條
1 郭艷紅;推薦系統(tǒng)的協(xié)同過(guò)濾算法與應(yīng)用研究[D];大連理工大學(xué);2008年
2 李濤;推薦系統(tǒng)中若干關(guān)鍵問(wèn)題研究[D];南京航空航天大學(xué);2009年
,本文編號(hào):2244055
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2244055.html