瀾滄江如美水電站左岸壩肩邊坡開挖響應(yīng)及穩(wěn)定性評(píng)價(jià)
本文選題:如美水電站 + 左岸壩肩邊坡; 參考:《成都理工大學(xué)》2017年碩士論文
【摘要】:隨著我國(guó)西藏水電能源的開發(fā),高山峽谷復(fù)雜地質(zhì)環(huán)境條件下大型水電站的修建所帶來的巖質(zhì)高邊坡的穩(wěn)定性問題日益突出,如美水電站位于西藏自治區(qū)芒康縣境內(nèi)的瀾滄江上游河段,擬建的心墻堆石壩最大壩高達(dá)315m,工程規(guī)模為一等大一型,是我國(guó)乃至世界上的高壩之一。如美水電站左岸壩肩邊坡所在的河谷呈深“V”型,巖性為英安巖和花崗巖(左岸壩肩邊坡開挖區(qū)以英安巖為主),左岸壩肩邊坡具有地形陡峻、巖質(zhì)堅(jiān)硬、結(jié)構(gòu)面發(fā)育、地表風(fēng)化卸荷強(qiáng)烈和地應(yīng)力復(fù)雜等特點(diǎn),因此,對(duì)左岸壩肩開挖響應(yīng)及穩(wěn)定性的研究具有重大工程意義。本文以如美水電站左岸壩肩邊坡為研究對(duì)象,通過邊坡工程地質(zhì)條件、巖體結(jié)構(gòu)特征等研究,以定性分析和定量分析相結(jié)合的基本學(xué)術(shù)思想綜合評(píng)價(jià)左岸壩肩邊坡開挖條件下的變形破壞模式,基于變形破壞模式評(píng)價(jià)其開挖響應(yīng)和穩(wěn)定性。取得的主要研究成果如下:(1)根據(jù)前期壩址區(qū)地質(zhì)調(diào)查資料,結(jié)合現(xiàn)場(chǎng)調(diào)查和復(fù)核,查明了邊坡巖體結(jié)構(gòu)特征。將左岸壩肩邊坡發(fā)育的結(jié)構(gòu)面按成因分為原生、構(gòu)造和表生結(jié)構(gòu)面,根據(jù)結(jié)構(gòu)面分級(jí)標(biāo)準(zhǔn)將結(jié)構(gòu)面分為Ⅲ級(jí)、Ⅳ級(jí)和Ⅴ級(jí)結(jié)構(gòu)面;诖罅科巾险{(diào)查資料,總結(jié)了左岸壩肩邊坡巖體風(fēng)化卸荷特征。(2)定性分析和定量分析相結(jié)合,分析了邊坡潛在的變形破壞模式和變形破壞的邊界。邊坡變形破壞模式為由陡傾斷層(或長(zhǎng)大陡傾結(jié)構(gòu)面)與中緩傾結(jié)構(gòu)面組合形成的階梯狀滑移-拉裂或蠕滑-拉裂。左岸壩肩邊坡開挖后存在三個(gè)潛在不穩(wěn)定區(qū)域:其一是斷層fp~(13-1)和高高程附近發(fā)育的緩傾外節(jié)理組成的潛在不穩(wěn)定區(qū)域;其二為斷層fp~(9-3)、fp~(9-4)和碎裂巖體界限組成的潛在不穩(wěn)定區(qū)域;其三為斷層帶、巖脈和長(zhǎng)大裂隙組合形成的淺表部潛在不穩(wěn)定區(qū)域。(3)基于有限差分法和傳遞系數(shù)法,系統(tǒng)地研究了左岸壩肩邊坡開挖卸荷條件下的穩(wěn)定性。通過有限差分法得到邊坡分級(jí)開挖條件下的應(yīng)力、變形響應(yīng),通過傳遞系數(shù)法定量地分析了邊坡潛在組合塊體的穩(wěn)定性。開挖影響邊坡淺表部應(yīng)力,其中最大主應(yīng)力有減小→增大→減小的趨勢(shì)。開挖引起最大約146.3cm的合位移,向坡外的最大變形約為73.6cm,向下的最大變形約為146.1cm,最大回彈值約為3.2cm。通過傳遞系數(shù)法得到了6個(gè)組合塊體的穩(wěn)定性系數(shù),在天然工況下,由小斷層fp~(9-5)和緩傾坡外節(jié)理控制的塊體(塊體2~4)穩(wěn)定性系數(shù)較大,塊體5的穩(wěn)定性系數(shù)最小,但穩(wěn)定性系數(shù)都大于1.2。(4)基于上述研究成果,左岸壩肩邊坡開挖后主要影響范圍是開口線以上巖體,由于斷層的切割,開挖面以上的巖體失穩(wěn)可能較大,是邊坡治理的重點(diǎn),要防止開口線以上的由斷層控制的塊體在開挖面剪出。同時(shí),底部臨時(shí)邊坡的坡表會(huì)形成以巖脈為后緣,長(zhǎng)大裂隙為底面的塊體,應(yīng)予以重視。
[Abstract]:With the development of Tibet hydropower energy, the stability of the high rock slope caused by the construction of the large hydropower station in the complex geological environment of the high mountain canyon is becoming more and more serious. For example, the main dam of the built heart wall rockfill dam is up to 315m in the upper reaches of the Lancang River in the Mangkam County of Tibet autonomous region. It is one of the high dams in our country and in the world, such as the deep "V" in the valley of the left bank abutment slope of the hydropower station. The lithology is the Angan rock and granite (the left bank abutment slope is excavated mainly by the Angan rock). The left bank abutment slope has steep terrain, hard rock, structural surface development, surface weathering stress and ground stress. Therefore, it is of great engineering significance to study the excavation response and stability of the left bank abutment. This paper takes the left bank abutment slope of the American hydropower station as the research object, through the study of the slope engineering geological conditions, the rock mass structure characteristics and so on, and comprehensively evaluate the left bank abutment with the basic academic thought of combining qualitative analysis with quantitative analysis. The deformation failure mode under the condition of slope excavation is based on the deformation failure mode to evaluate the response and stability of the excavation. The main achievements are as follows: (1) according to the geological survey data of the earlier dam site, the structural features of the rock slope are found out in combination with the site investigation and rechecking, and the structure surface of the left bank abutment slope is divided into the original form. The structure surface is divided into grade III, IV and v. Based on a large number of adit investigation data, the weathering and unloading characteristics of the rock mass in the left bank abutment slope are summarized. (2) the qualitative analysis and quantitative analysis are combined, and the potential deformation failure modes and the boundary of the deformation and failure are analyzed. The slope deformation and failure mode is a staircase slip - pull - pull or creep - pull crack formed by a steep dip fault (or a steep dip structure surface) and a medium dip structure surface. There are three potential unstable regions after the excavation of the left bank abutment slope: one is the potential unstable region formed by the slow DIP joint developed near the fault fp~ (13-1) and high elevation. The second is the potential unstable region of the fault fp~ (9-3), fp~ (9-4) and fractured rock mass boundary, and the third is the potential unstable region formed by the fault zone, the rock vein and the large fissure combination. (3) the stability of the slope under the unloading condition of the left bank abutment slope is systematically studied based on the finite difference method and the transfer coefficient method. The finite difference is carried out through the finite difference. The stress, deformation response and the stability of the potential block of the slope are quantitatively analyzed by the transfer coefficient method. The stress of the shallow surface of the slope is affected by the excavation. The maximum principal stress has the tendency to decrease, increase and decrease. The maximum 146.3cm displacement is caused by the excavation, and the maximum deformation is about the slope outside the slope. For 73.6cm, the maximum downward deformation is about 146.1cm, the maximum rebound value is about 3.2cm. through the transfer coefficient method, the stability coefficient of 6 block bodies is obtained. Under natural conditions, the stability coefficient of block (block body 2~4) controlled by small fault fp~ (9-5) and gently inclined slope is larger, and the stability coefficient of block 5 is the smallest, but the stability coefficient is all More than 1.2. (4) based on the above research results, the main influence range after the excavation of the left bank abutment slope is the rock mass above the opening line. Because of the cutting of the fault, the instability of the rock mass above the excavation face is likely to be larger. It is the key point of the slope treatment. The formation of rock mass should be regarded as the trailing edge of the dike and the bottom of the growth fissure.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TV223
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉新喜;戴毅;張平;侯勇;江佳;;炭質(zhì)泥巖軟弱夾層巖質(zhì)邊坡穩(wěn)定性影響因素分析[J];湖南文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2017年01期
2 高艷華;郭俊男;甘一熊;隋智力;;爆破荷載作用下巖質(zhì)邊坡穩(wěn)定性研究進(jìn)展[J];金屬礦山;2017年03期
3 徐鎮(zhèn)凱;溫勇兵;魏博文;蔣水華;;基于組合賦權(quán)模糊云理論的高邊坡穩(wěn)定性評(píng)價(jià)[J];水利水運(yùn)工程學(xué)報(bào);2017年01期
4 李偉;肖蓉;吳禮舟;;巖質(zhì)邊坡中結(jié)構(gòu)面上水壓分布假設(shè)的改進(jìn)研究[J];巖石力學(xué)與工程學(xué)報(bào);2017年03期
5 秦哲;亓超;付厚利;郭少華;;高陡巖質(zhì)邊坡削坡工程中的穩(wěn)定性研究[J];煤炭技術(shù);2016年11期
6 孫丹芳;胡修文;李雨;朱杭琦;;考慮拉破壞的離散元雙強(qiáng)度折減法的巖質(zhì)邊坡穩(wěn)定性分析[J];科學(xué)技術(shù)與工程;2016年31期
7 陳曉磊;;雙滑面巖質(zhì)邊坡穩(wěn)定性極限平衡計(jì)算方法[J];地下空間與工程學(xué)報(bào);2016年05期
8 韓龍強(qiáng);吳順川;李志鵬;;基于Hoek-Brown準(zhǔn)則的非等比強(qiáng)度折減方法[J];巖土力學(xué);2016年S2期
9 袁愛平;;基于層次分析法-正態(tài)云模型的巖質(zhì)邊坡穩(wěn)定性預(yù)測(cè)[J];水電能源科學(xué);2016年09期
10 王雙;李小春;石露;劉召勝;;物質(zhì)點(diǎn)強(qiáng)度折減法及其在邊坡中的應(yīng)用[J];巖土力學(xué);2016年09期
相關(guān)碩士學(xué)位論文 前10條
1 韓朝陽;大渡河丹巴水電站壩肩邊坡變形破壞模式及穩(wěn)定性研究[D];成都理工大學(xué);2016年
2 魏久坤;帶巖橋巖質(zhì)邊坡塑性極限分析下限法研究[D];昆明理工大學(xué);2016年
3 王亮;地震作用下層狀巖質(zhì)邊坡加速度響應(yīng)規(guī)律及其應(yīng)用[D];大連理工大學(xué);2016年
4 江陽;順層巖質(zhì)邊坡破壞機(jī)理及抗滑樁防治技術(shù)研究[D];湖北工業(yè)大學(xué);2016年
5 呂彥達(dá);金沙江大橋錨碇區(qū)巖質(zhì)邊坡穩(wěn)定性評(píng)價(jià)與分析[D];長(zhǎng)安大學(xué);2016年
6 李旭;基于ZOPP的如美水電站開發(fā)研究[D];昆明理工大學(xué);2015年
7 陳本龍;如美水電站強(qiáng)風(fēng)化、強(qiáng)卸荷高邊坡穩(wěn)定性研究[D];清華大學(xué);2013年
8 李建榮;如美水電站邊坡碎裂巖體成因機(jī)理及邊坡巖體質(zhì)量分級(jí)研究[D];三峽大學(xué);2013年
9 劉順昌;如美水電站巖質(zhì)邊坡傾倒破壞機(jī)理研究[D];中國(guó)地質(zhì)大學(xué);2013年
10 谷飛宏;如美水電站壩肩邊坡穩(wěn)定性研究[D];中國(guó)地質(zhì)大學(xué);2012年
,本文編號(hào):1853835
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1853835.html