天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

地源熱泵與雨水收集聯(lián)合技術(shù)單元體研究

發(fā)布時(shí)間:2018-05-06 21:47

  本文選題:聯(lián)合單元體 + 地源熱泵。 參考:《重慶大學(xué)》2014年碩士論文


【摘要】:地源熱泵與雨水收集聯(lián)合單元體技術(shù)是將地源熱泵技術(shù)與雨水收集利用技術(shù)結(jié)合起來的一種技術(shù)創(chuàng)新形式,兼具換熱與蓄水兩方面的功能。這種技術(shù)創(chuàng)新形式打破了傳統(tǒng)雨水蓄存與利用思維,利用地埋管換熱器為載體,通過合適的滲水管設(shè)計(jì),將經(jīng)處理過的地面雨水蓄存至巖土不同深度、不同類型的含水層中;在蓄水的同時(shí),對(duì)地埋管換熱器的換熱性能也有一定程度的改善。因此,研究聯(lián)合技術(shù)單元體的蓄水-換熱特性為城市雨洪災(zāi)害的控制提供了一種新的思路,為地下水平衡補(bǔ)給提供了一種新的方法,為地源熱泵系統(tǒng)的優(yōu)化設(shè)計(jì)提供了一個(gè)切入點(diǎn),具有明確的工程實(shí)踐價(jià)值。 文章從實(shí)驗(yàn)研究的角度出發(fā),建立了聯(lián)合技術(shù)單元體實(shí)驗(yàn)研究技術(shù)平臺(tái),通過實(shí)驗(yàn)研究與分析,獲得了單元體蓄水-換熱過程的基本特性;在分析了多孔介質(zhì)傳熱、傳質(zhì)理論的基礎(chǔ)上,建立了潛水含水層理論蓄水方程,并與實(shí)驗(yàn)蓄水量進(jìn)行了比較分析,,驗(yàn)證了計(jì)算方程的正確性;在實(shí)驗(yàn)與理論分析的基礎(chǔ)上,建立了單元體技術(shù)蓄水-換熱耦合過程的數(shù)值模型,通過Fluent軟件模擬分析了單元體技術(shù)的耦合過程特性;最后提出了聯(lián)合技術(shù)在工程實(shí)踐中的應(yīng)用方法。 實(shí)驗(yàn)研究結(jié)果表明,不同巖層深度的靜水水壓不同,場地-80m深度處水壓較-30m深度處水壓高4.87m;單元體蓄水過程分為初期階段與穩(wěn)定蓄水期階段,B單元體穩(wěn)定蓄水階段的平均蓄水能力為0.19L/min;將滲水管入口初始?jí)毫μ岣邽?m水柱時(shí),平均蓄水能力可達(dá)到0.24L/min;單元體間歇蓄水過程存在蓄水痕跡,蓄水恢復(fù)期越長,蓄水痕跡越小。單元體蓄水能力與滲水孔孔徑、數(shù)量、滲水孔的豎向分布以及巖土體的自身的滲透性能有關(guān),單元體工程設(shè)計(jì)應(yīng)保證滲水管的流通能力大于鉆孔外滲透能力,充分發(fā)揮巖土體蓄水潛力。 單元體排熱引起的水分變化是一個(gè)緩慢的過程,而排熱結(jié)束后的水分恢復(fù)過程可在較短時(shí)間內(nèi)完成;含水率的恢復(fù)時(shí)間遠(yuǎn)小于含水率的變化時(shí)間。由于傳熱過程中對(duì)流比例的增加,蓄水-排熱耦合過程中,單元體的溫度擴(kuò)散能力大于排熱工況,可有效增大溫度擴(kuò)散半徑,增加鉆孔壁面與管壁的平均傳熱溫差;根據(jù)C單元體實(shí)驗(yàn)結(jié)果,蓄水過程可將換熱能力提高9.8%。理論計(jì)算結(jié)果表明,B單元體蓄水能力為0.155L/min,低于實(shí)驗(yàn)過程的穩(wěn)定階段的蓄水能力0.19L/min,這是由于理論蓄水計(jì)算的假設(shè)條件為泥巖地質(zhì),而實(shí)際單元體為原生土與泥巖的復(fù)合構(gòu)造,其滲透性較泥巖地質(zhì)優(yōu)越。
[Abstract]:Ground-source heat pump (GSHP) combined with Rain Water collection unit technology is a kind of technical innovation form which combines ground-source heat pump technology with Rain Water collection and utilization technology, and has the functions of heat transfer and water storage. This kind of technological innovation has broken the traditional thinking of Rain Water storage and utilization. By using the underground heat exchanger as the carrier, the treated surface Rain Water is stored in different depth and different types of aquifer through the proper design of the seepage pipe. At the same time, the heat transfer performance of buried tube heat exchanger is improved to some extent. Therefore, the study of the water-heat transfer characteristics of the combined technical unit provides a new idea for the control of urban rain-flood disaster and a new method for the balanced recharge of groundwater. It provides a breakthrough point for the optimal design of ground source heat pump system and has definite engineering value. From the point of view of experimental research, this paper establishes the experimental research platform of combined technical unit body. Through the experimental research and analysis, the basic characteristics of the water storage and heat transfer process of the unit body are obtained, and the heat transfer in porous media is analyzed. On the basis of mass transfer theory, the theoretical water storage equation of submersible aquifer is established, and compared with the experimental storage capacity, the correctness of the calculation equation is verified, and on the basis of experimental and theoretical analysis, The numerical model of the coupled water storage and heat transfer process of the unit body technology is established, the coupling process characteristics of the unit body technology are simulated and analyzed by Fluent software, and the application method of the combined technology in engineering practice is put forward. The experimental results show that the hydrostatic pressure of different strata is different. The water pressure at -80 m depth is 4.87 m higher than that at -30 m depth, and the average water storage capacity of unit B is 0.19 L / min, when the initial pressure at the inlet of seepage pipe is increased to 5m water column, the average water storage capacity of unit B is 0.19 L / min. The average water storage capacity can reach 0.24L / min, and the water storage trace exists in the intermittent water storage process of the unit body, and the longer the water storage recovery period is, the smaller the water storage trace is. The water storage capacity of the unit body is related to the pore diameter, the quantity of the seepage hole, the vertical distribution of the seepage hole and the permeability of the rock and soil. The engineering design of the unit body should ensure that the circulation capacity of the seepage pipe is greater than that of the permeability outside the borehole. Give full play to the water storage potential of rock and soil. The change of water content caused by the heat release of unit body is a slow process, and the water recovery process after heat discharge can be completed in a relatively short time, and the recovery time of water content is much smaller than that of water content. Due to the increase of convection ratio in the heat transfer process, the temperature diffusion capacity of the unit is larger than that of the heat removal in the coupled process of water storage and heat removal, which can effectively increase the temperature diffusion radius and increase the average heat transfer temperature difference between the borehole wall and the tube wall. According to the experimental results of the C unit, the heat transfer capacity can be increased by 9.8% during the water storage process. The theoretical calculation results show that the water storage capacity of unit B is 0.155 L / min, which is lower than that of 0.19 L / min in the stable stage of the experimental process. This is because the assumption of theoretical water storage calculation is mudstone geology, while the actual unit body is a composite structure of probiotic soil and mudstone. Its permeability is superior to mudstone geology.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU83;TV213.9

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉為民,何平,張釗;土體導(dǎo)熱系數(shù)的評(píng)價(jià)與計(jì)算[J];冰川凍土;2002年06期

2 唐志偉;時(shí)曉燕;黃俊惠;王曉濤;;地源熱泵U型管地下?lián)Q熱器的數(shù)值模擬[J];北京工業(yè)大學(xué)學(xué)報(bào);2006年01期

3 楊衛(wèi)波;施明恒;;地源熱泵中U型埋管傳熱過程的數(shù)值模擬[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期

4 王勇,付祥釗;地源熱泵的套管式地下?lián)Q熱器研究[J];重慶建筑大學(xué)學(xué)報(bào);1997年05期

5 高青,李明,喬廣,于鳴,玄哲浩;間歇過程地溫恢復(fù)特性及其規(guī)律模擬計(jì)算分析[J];熱科學(xué)與技術(shù);2004年03期

6 高青,李明,于鳴,玄哲浩,喬廣;濕土壤含濕特性對(duì)傳熱影響研究[J];熱科學(xué)與技術(shù);2005年02期

7 刁乃仁,曾和義,方肇洪;豎直U型管地?zé)釗Q熱器的準(zhǔn)三維傳熱模型[J];熱能動(dòng)力工程;2003年04期

8 曾和義,刁乃仁,方肇洪;豎直埋管地?zé)釗Q熱器的穩(wěn)態(tài)溫度場分析[J];山東建筑工程學(xué)院學(xué)報(bào);2002年01期

9 曾和義,方肇洪;雙U型埋管地?zé)釗Q熱器的傳熱模型[J];山東建筑工程學(xué)院學(xué)報(bào);2003年01期

10 李元旦,張旭;土壤源熱泵的國內(nèi)外研究和應(yīng)用現(xiàn)狀及展望[J];制冷空調(diào)與電力機(jī)械;2002年01期

相關(guān)博士學(xué)位論文 前1條

1 於仲義;土壤源熱泵垂直地埋管換熱器傳熱特性研究[D];華中科技大學(xué);2008年



本文編號(hào):1854041

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1854041.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cf4d5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com