循環(huán)荷載作用下非飽和土豎井復(fù)合地基固結(jié)理論研究
本文選題:非飽和土 + 固結(jié)理論 ; 參考:《青島理工大學(xué)》2013年碩士論文
【摘要】:近年來(lái),隨著我國(guó)經(jīng)濟(jì)建設(shè)的快速發(fā)展,大量基礎(chǔ)建設(shè)工程(如高速公路,高速鐵路等)在軟土地區(qū)進(jìn)行施工建設(shè),而現(xiàn)有設(shè)計(jì)理論大多是以飽和土的固結(jié)理論為基礎(chǔ),而土體通常是由氣、液、固組成的三項(xiàng)體;此外,由于我國(guó)已經(jīng)進(jìn)入高速公路、高速鐵路蓬勃發(fā)展的新時(shí)期,,且規(guī)劃中和已建成的線路地區(qū)不可避免會(huì)經(jīng)過(guò)廣泛分布有深厚軟粘土的地段,如我國(guó)東南沿海、長(zhǎng)江三角洲一帶等,豎井地基作為一種軟基加固處理手段被廣泛應(yīng)用。然而,大量研究表明,經(jīng)過(guò)壓實(shí)的路基土仍然會(huì)處于非飽和狀態(tài)。因此,從非飽和土的角度出發(fā),采用非飽和土的理論與方法,對(duì)循環(huán)荷載作用下非飽和豎井地基的基本性質(zhì)進(jìn)行研究,解路基審計(jì)的理論及相關(guān)工程技術(shù)問(wèn)題非常有必要。鑒于此,本文基于前人的工作,從Fredlund的非飽和土固結(jié)理論出發(fā),建立任意荷載作用下非飽和土豎井復(fù)合地基固結(jié)計(jì)算模型,通過(guò)理論推導(dǎo)并結(jié)合有限元方法,對(duì)任意荷載作用下非飽和土豎井復(fù)合地基的固結(jié)問(wèn)題進(jìn)行了全面的分析研究。 首先,在Fredlund非飽和土固結(jié)理論方程基礎(chǔ)上,聯(lián)合Darcy定律和Fick定律,建立關(guān)于有限深度的非飽和土豎井復(fù)合地基在任意荷載作用下固結(jié)的微分方程。通過(guò)Laplace變換,得到超孔隙氣壓力和超孔隙水壓力在變換域內(nèi)的半解析解。應(yīng)用自編程序分析各種循環(huán)荷載作用下非飽和土的超孔隙氣壓力和超孔隙水壓力的變化規(guī)律。 其次,在之前研究的基礎(chǔ)上,對(duì)計(jì)算模型進(jìn)行修改完善,并運(yùn)用有限元方法,對(duì)考慮涂抹效應(yīng)的有限深度非飽和土豎井復(fù)合地基在任意荷載作用下超孔隙氣壓力、超孔隙水壓力以及土體沉降的變化規(guī)律進(jìn)行了分析研究。 最后,對(duì)計(jì)算模型再進(jìn)行更進(jìn)一步改進(jìn),運(yùn)用有限元方法,分析了考慮水平和豎向二向滲流的有限深度非飽和土豎井復(fù)合地基在任意荷載作用下超孔隙氣壓力、超孔隙水壓力以及土體平均固結(jié)度的變化規(guī)律,并給出了此種土體模型在土體固結(jié)計(jì)算中可以忽略土體豎向滲流情況時(shí)的土體H k wz/kwr關(guān)系的大致范圍。 本文基于高速發(fā)展的工程建設(shè)對(duì)現(xiàn)有非飽和土固結(jié)理論提出更新、更高要求的客觀現(xiàn)狀,探索性地研究了任意荷載作用下的非飽和土豎井復(fù)合地基的固結(jié)沉降規(guī)律,給出了各種土體模型中超孔隙氣壓力、超孔隙水壓力在各種荷載作用下的變化規(guī)律并分析對(duì)比了其之間的異同,對(duì)于非飽和土固結(jié)理論的完善發(fā)展具有重要意義。
[Abstract]:In recent years, with the rapid development of economic construction in our country, a large number of infrastructure projects (such as highway, high-speed railway, etc.) have been constructed in soft soil areas, and most of the existing design theories are based on the consolidation theory of saturated soil. The soil mass is usually composed of gas, liquid and solid. In addition, since China has entered the expressway, the high-speed railway is booming in a new period. And it is inevitable that the planned and completed railway areas will be widely distributed in areas with deep soft clay, such as the southeast coast of China, the Yangtze River Delta and so on. The shaft foundation is widely used as a means of strengthening soft foundation. However, a large number of studies show that the compacted subgrade soil will remain unsaturated. Therefore, from the point of view of unsaturated soil, the basic properties of unsaturated shaft foundation under cyclic load are studied by using the theory and method of unsaturated soil. It is very necessary to solve the theory of roadbed audit and related engineering technical problems. In view of this, based on the previous work, based on Fredlund's unsaturated soil consolidation theory, the consolidation calculation model of unsaturated soil shaft composite foundation under arbitrary load is established, which is deduced by theory and combined with finite element method. The consolidation problem of unsaturated soil shaft composite foundation under arbitrary load is studied. Firstly, on the basis of Fredlund's consolidation theory equation of unsaturated soil, Darcy's law and Fick's law are combined to establish the differential equation of consolidation of unsaturated soil shaft composite foundation with finite depth under arbitrary load. By means of Laplace transformation, the semi-analytical solutions of the excess pore gas pressure and the excess pore water pressure in the transformation domain are obtained. The variation law of excess pore gas pressure and excess pore water pressure of unsaturated soil under various cyclic loads is analyzed by using a self-compiled program. Secondly, on the basis of previous research, the calculation model is modified and perfected, and the finite element method is used to study the excess pore gas pressure of unsaturated soil shaft composite foundation with finite depth considering smear effect under arbitrary load. The changes of excess pore water pressure and soil settlement were analyzed and studied. Finally, the calculation model is further improved, and finite element method is used to analyze the excess pore gas pressure of unsaturated soil shaft composite foundation with finite depth considering horizontal and vertical two-direction seepage under arbitrary load. The variation law of excess pore water pressure and average consolidation degree of soil is given, and the approximate range of H k wz/kwr relation of soil mass can be neglected in soil consolidation calculation by this soil model. In this paper, based on the objective status quo that the existing consolidation theory of unsaturated soil is updated and demanded by the engineering construction with high speed, the consolidation and settlement law of the unsaturated soil shaft composite foundation under arbitrary load is studied in this paper. The variation law of excess pore gas pressure and excess pore water pressure under various loads in various soil models are given, and the similarities and differences between them are analyzed and compared, which is of great significance for the improvement and development of the consolidation theory of unsaturated soil.
【學(xué)位授予單位】:青島理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TU470
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王瑞春,謝康和,唐曉武;未打穿散體材料樁復(fù)合地基固結(jié)解析研究[J];公路交通科技;2004年06期
2 凌華;殷宗澤;蔡正銀;;非飽和土受荷后的單向初期變形和固結(jié)變形[J];河海大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
3 王瑞春,謝康和;考慮應(yīng)力集中效應(yīng)的散體材料樁復(fù)合地基固結(jié)解析分析[J];科技通報(bào);2001年05期
4 張建紅,何昌榮;往返荷載作用下非飽和砂性土的液化強(qiáng)度和孔壓規(guī)律[J];成都科技大學(xué)學(xué)報(bào);1994年01期
5 盧廷浩;非飽和土三維固結(jié)問(wèn)題探討[J];成都科技大學(xué)學(xué)報(bào);1996年01期
6 凌華;殷宗澤;;非飽和土二、三維固結(jié)方程簡(jiǎn)化計(jì)算方法[J];水利水電科技進(jìn)展;2007年02期
7 俞培基;陳愈炯;;非飽和土的水-氣形態(tài)及其與力學(xué)性質(zhì)的關(guān)系[J];水利學(xué)報(bào);1965年01期
8 唐益群,呂少偉,葉為民,黃雨;淺氣層高孔壓非飽和土固結(jié)規(guī)律研究[J];土木工程學(xué)報(bào);2001年06期
9 楊超;崔玉軍;黃茂松;J.M.PEREIRA;J.P.KARAM;;循環(huán)荷載下非飽和結(jié)構(gòu)性黃土的損傷模型[J];巖石力學(xué)與工程學(xué)報(bào);2008年04期
10 王貽蓀;考慮砂井阻力的折減井徑法[J];巖土工程學(xué)報(bào);1982年03期
本文編號(hào):1927023
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1927023.html