冬季寒冷條件下太陽能—空氣源熱泵熱水器的數(shù)值模擬
本文關(guān)鍵詞:冬季寒冷條件下太陽能—空氣源熱泵熱水器的數(shù)值模擬 出處:《蘭州理工大學》2013年碩士論文 論文類型:學位論文
更多相關(guān)文章: 空氣源熱泵 太陽能輔助加熱 系統(tǒng)性能 低溫適應性 經(jīng)濟性分析
【摘要】:隨著我國經(jīng)濟社會的高速發(fā)展,能源危機和節(jié)能減排的意識日益高漲。建筑能耗占我國社會總能耗的40%以上,建筑節(jié)能已經(jīng)成為節(jié)能減排的重點領域,可再生能源輔助的熱泵技術(shù)研究已經(jīng)成為熱泵研究領域的熱點,空氣熱源和太陽能熱源以其資源豐富、清潔無污染等優(yōu)勢在熱泵熱利用中獲得普遍關(guān)注。然而,由于太陽能的間歇性和低能量密度,傳統(tǒng)空氣源熱泵在冬季低溫條件下系統(tǒng)性能明顯下降,因此,空氣源熱泵或太陽能熱泵在我國廣大北方地區(qū)的推廣應用都受到了嚴重制約。研發(fā)經(jīng)濟高效、性能穩(wěn)定、適用地域廣的多能互補熱泵系統(tǒng)成為解決這一問題的有效途徑。 為了利用西北地區(qū)豐富的太陽能資源,有效提高空氣源熱泵熱水器在我國西北寒冷地區(qū)的熱力性能和低溫適應性,本課題將直膨式太陽能集熱器和空氣源熱泵的蒸發(fā)器在結(jié)構(gòu)和功能上結(jié)合起來,提出了一種適合西北寒冷地區(qū)的太陽能輔助加熱的空氣源熱泵熱水系統(tǒng),并開展了相關(guān)研究。主要的研究內(nèi)容和結(jié)果如下: (1)建立了太陽能輔助空氣源熱泵熱水系統(tǒng)各部件及系統(tǒng)的數(shù)學模型并進行了求解。利用穩(wěn)態(tài)分布參數(shù)法建立了翅片管換熱器、沉浸式盤管冷凝器和蓄熱水箱的仿真計算模型,建立了壓縮機和熱力膨脹閥的集總參數(shù)數(shù)學模型,建立了制冷劑熱力性質(zhì)計算模型和制冷劑充注量數(shù)學模型,聯(lián)立各部件模型,利用Matlab軟件編寫了系統(tǒng)的模擬計算程序,迭代求解了整個熱泵熱水器系統(tǒng)循環(huán)。 (2)以上海交通大學郭俊杰博士建立的空氣源熱泵熱水裝置在5℃的實驗性能為參照,結(jié)合蘭州地區(qū)氣象數(shù)據(jù),運用系統(tǒng)模擬計算程序研究了空氣源熱泵熱水器在蘭州冬季環(huán)境溫度為-20-5℃時的性能,結(jié)果表明:隨著環(huán)境溫度的升高,系統(tǒng)的各項性能得到了改善,制熱量迅速升高,壓縮機耗功下降,熱水加熱時間縮短,系統(tǒng)COP明顯增大;當環(huán)境溫度低于-15℃時,蒸發(fā)溫度過低,制冷劑流量很小,導致系統(tǒng)的COP低于1.6,幾乎等同于用電直接制取熱水。 (3)設計了一套直膨式太陽能集熱器,與空氣換熱器/蒸發(fā)器并聯(lián)作為太陽能輔助空氣源熱泵系統(tǒng)的蒸發(fā)端,在-20-5℃的環(huán)境溫度下,取太陽能輻射強度分別為200W/m2、500W/m2、700W/m2,研究太陽能輔助空氣源熱泵熱水系統(tǒng)的性能,結(jié)果表明:系統(tǒng)的制熱量隨環(huán)境溫度和太陽能輻射強度的升高而增大,太陽能和空氣雙熱源熱泵系統(tǒng)的制熱量明顯大于單獨空氣源熱泵系統(tǒng)的制熱量,而且隨著太陽能輻射強度的增大而增大;壓縮機功率隨環(huán)境溫度和太陽輻射強度的升高略有升高,但變化不大;隨著太陽輻射強度和環(huán)境溫度的升高,系統(tǒng)COP明顯升高,熱水加熱時間△τ不斷減少。 (4)研究了設定工況下系統(tǒng)把水從15℃加熱到55℃的過程中太陽能、空氣熱能以及壓縮機耗功各自的貢獻率,即能量的輸入份額,結(jié)果表明:當太陽輻射強度一定時,隨著環(huán)境溫度的升高,太陽能和空氣熱能所輸入的能量份額逐漸上升,而壓縮機耗電量逐漸減。弘S著太陽輻射強度的增大,太陽能輸入的能量份額增大,空氣熱能輸入的能量份額減小,壓縮機耗電量輸入份額減小。 (5)與傳統(tǒng)能源熱水器(燃氣熱水器、燃煤熱水器、電加熱熱水器)相比,制取相同量的熱水,單獨空氣源熱泵熱水器和太陽能輔助空氣源熱泵熱水器經(jīng)濟性都明顯優(yōu)于電加熱熱水器;當環(huán)境溫度高于-5℃時,空氣源熱泵熱水器和太陽能輔助空氣源熱泵熱水器比燃氣熱水器節(jié)能,隨著環(huán)境溫度的升高,系統(tǒng)的能耗越少,經(jīng)濟性越明顯;環(huán)境溫度高于-20℃時太陽能輔助空氣源熱泵熱水器也明顯比燃氣熱水器和燃煤熱水器更節(jié)能,并且隨著環(huán)境溫度的升高系統(tǒng)耗電量和電費越少;太陽能輔助空氣源熱泵熱水器的經(jīng)濟性和節(jié)能性明顯優(yōu)于單獨空氣源熱泵熱水器;當環(huán)境溫度為0℃時,制取相同量的生活熱水,太陽能輔助空氣源熱泵熱水器分別比天然氣、標準煤、電能和單獨空氣源熱泵熱水器節(jié)能50.4%,53.7%,82.1%,42.8%;隨著各能源價格的上漲,太陽能輔助空氣源熱泵熱水器具有較高的經(jīng)濟競爭優(yōu)勢。 本課題的創(chuàng)新性在于研發(fā)了一套適合冬季寒冷地區(qū)使用的太陽能輔助的空氣源熱泵熱水系統(tǒng),并研究了其-20-5℃環(huán)境溫度下的性能,改善了單獨空氣源熱泵系統(tǒng)在寒冷氣候條件下的制熱性能,為該系統(tǒng)在西北地區(qū)的推廣和應用提供了理論依據(jù)。 研究過程中,本課題得到了國家863計劃課題(2013AA051601)、國家科技支撐計劃課題(2011BAD15803)、國家自然科學基金項目(51266005)、教育部科學技術(shù)研究重點項目(1106ZBB007)、甘肅省杰出青年科學基金項目(2012GS05601)、甘肅省教育廳項目(0803-06)、甘肅省建設科技攻關(guān)項目(JK2010-29)以及蘭州理工大學“紅柳杰出人才計劃”(Q201101)等項目的聯(lián)合資助。
[Abstract]:With the rapid development of China's economy and society, energy crisis and rising awareness of energy saving and emission reduction. The building energy consumption accounted for 40% of total energy consumption in our society, building energy efficiency has become the key areas of energy saving, renewable energy assisted heat pump technology research has become a hot research field of heat pump, air source and solar heat source to the the advantage of rich resources, clean and pollution-free won widespread attention in the use of heat. However, due to the intermittent solar energy and low energy density, the traditional air source heat pump in the system decreased significantly under low temperature in winter can therefore, application of air source heat pump or solar heat pump in the northern region of China was serious restricted. Research and development of economic efficiency, stable performance, multi energy complementary heat pump system has become an effective way to solve the problem for the region wide.
In order to utilize the abundant solar energy resources in the northwest region, effectively improve the air source heat pump water heater in China's northwest cold area thermal performance and low temperature adaptability, the evaporator direct expansion solar heat collector and the air source heat pump combined in structure and function, put forward the air source heat pump hot water system for the northwest cold regions of the solar assisted heating, and carried out related research. The main research contents and results are as follows:
(1) established the mathematical model of each component and system of solar assisted air source heat pump hot water system and solved. A finned tube heat exchanger using steady-state distributed parameter method, immersion coil condenser and the heat storage tank of the simulation model, the lumped parameter models of compressor and thermal expansion valve. The establishment of the mathematical model and mathematical model of the refrigerant filling quantity of refrigerant thermodynamic properties, the simultaneous model of the various components, write the simulation program of the system by using Matlab software, the iterative solution of the heat pump water heater system cycle.
(2) the air source heat pump hot water device established by Dr. Guo Junjie of Shanghai Jiao Tong University in the experimental performance of 5 DEG C for reference, combined with the meteorological data of Lanzhou area, using the system simulation of the air source heat pump water heater for the performance of 20-5 C in the Lanzhou winter temperature calculation program. The results show that with the increase of environmental temperature, the the performance of the system is improved, the heat rises rapidly, compressor power consumption decreased, heating time is shortened, COP increased significantly; when the environment temperature is below 15 DEG C when the evaporation temperature is too low, the refrigerant flow is very small, resulting in the COP less than 1.6, almost equivalent to electricity directly by hot water.
(3) a direct expansion solar collector was designed, and the air heat exchanger / parallel evaporators as solar assisted air source heat pump system in evaporation end, 20-5 at ambient temperature, solar radiation intensity were 200W/m2500W/m2700W/m2, auxiliary performance research of solar air source heat pump hot water system, help the results show that the increase of heating system with environmental temperature and solar radiation intensity increases, the heating system of solar energy and air heat dual heat source heat pump system was higher than that of the air source heat pump systems, and increases with the solar radiation intensity increases; the compressor power with the ambient temperature and solar radiation intensity increased slightly increased, but the change is not significant; with the increase of solar radiation intensity and ambient temperature, COP increased significantly, hot water heating time decreasing. Delta tau
(4) on the condition of the water system set from 15 C to 55 C of the solar heating process, power consumption and heat air compressor respective contribution rate, namely the input energy share, the results showed that: when the solar radiation intensity, with the increase of environmental temperature, solar energy and air heat energy input. The share increased gradually, while the compressor power consumption decreases gradually with the increase of the intensity of solar radiation, solar energy input share increases, the air heat input energy share is reduced, the power consumption of the compressor input share decreases.
(5) with conventional energy water heater (coal gas water heater, water heater, electric water heater) compared to produce the same amount of hot water, separate air source heat pump water heater and solar assisted air source heat pump water heater economy are obviously better than the electric water heater; when the environment temperature is higher than 5 DEG C, air source heat pump water heater and solar assisted air source heat pump water heater, gas water heater energy ratio, with the increase of environmental temperature, the energy consumption of the system is less, the economy is more obvious; the environment temperature is higher than from-20 DEG when solar assisted air source heat pump water heater is also significantly higher than the gas water heater and water heater burning more energy, and with the environment temperature increasing system power consumption and electricity less; solar assisted air source heat pump water heater economy and energy efficiency is obviously better than the single air source heat pump water heater; when the ambient temperature is 0 degrees centigrade for The same quantity of hot water, solar assisted air source heat pump water heater respectively than natural gas, coal, electricity and air source heat pump water heater energy saving 50.4%, 53.7%, 82.1%, 42.8%; with the rising energy prices, solar assisted air source heat pump water heater has high economic competitive advantage.
The innovation of this paper is to develop a set of suitable for cold air source heat pump hot water system of solar assisted area used in winter, and study the performance of the 20-5 at ambient temperature, heating to improve the performance of individual air source heat pump system in cold climates, and provides a theoretical basis for the popularization and application of this the system in the northwest region.
In the process of research, this dissertation is supported by the National 863 Project (2013AA051601), National Science and technology support program (2011BAD15803), the National Natural Science Fund Project (51266005), the Ministry of Education Science and technology research projects (1106ZBB007), Gansu Province outstanding youth science fund project (2012GS05601), Gansu Provincial Department of education project (0803-06) Gansu Province, the construction of key projects of science and Technology (JK2010-29) and the Lanzhou University of Technology tamarisk outstanding talent program (Q201101) jointly funded projects.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TU822
【參考文獻】
相關(guān)期刊論文 前10條
1 李舒宏,武文彬,張小松,殷勇高;太陽能熱泵熱水裝置試驗研究與應用分析[J];東南大學學報(自然科學版);2005年01期
2 劉文合;李桂文;;可再生能源在農(nóng)村建筑中的應用研究[J];低溫建筑技術(shù);2007年04期
3 鐘浩;李志民;羅會龍;鐵燕;李明;夏朝鳳;;空氣源熱泵輔助供熱太陽能熱水系統(tǒng)實驗研究[J];建筑節(jié)能;2011年03期
4 徐國英;張小松;;復合熱源熱泵系統(tǒng)集熱/蒸發(fā)器的模型[J];工程熱物理學報;2006年S1期
5 李嫵,陶文銓,康海軍,李惠珍,,辛榮昌;整體式翅片管換熱器傳熱和阻力性能的試驗研究[J];機械工程學報;1997年01期
6 羅會龍;鐵燕;李明;鐘浩;;空氣源熱泵輔助加熱太陽能熱水系統(tǒng)熱性能研究[J];建筑科學;2009年02期
7 饒榮水,谷波,周澤,申建軍,孔波;寒冷地區(qū)用空氣源熱泵技術(shù)進展[J];建筑熱能通風空調(diào);2005年04期
8 余延順,馬最良,廉樂明;太陽能熱泵系統(tǒng)運行工況的模擬研究[J];流體機械;2004年05期
9 洪峰,劉利華,陳斌,王勤,陳光明;一種新型變濃度容量調(diào)節(jié)熱泵系統(tǒng)的性能預測[J];流體機械;2004年08期
10 盧春萍;師涌江;田海川;;太陽能-空氣源熱泵并聯(lián)供熱系統(tǒng)模擬研究[J];流體機械;2008年07期
本文編號:1409836
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1409836.html