天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

Recommendation System Based on Spark and Hybrid Weight Algor

發(fā)布時間:2021-08-31 09:49
  The development of Internet technology is changing with each passing day.People used to worry about lack of information.Now they face huge amounts of information but it is difficult to get useful information.People’s worry has changed from the lack of information to how to obtain the valuable information they need in the sea of information.The emergence of the recommendation system solves the problem of information overload to some extent.From the initial single algorithm recommendation system t... 

【文章來源】:華中師范大學湖北省 211工程院校 教育部直屬院校

【文章頁數(shù)】:74 頁

【學位級別】:碩士

【文章目錄】:
Acknowledgements
Abstract
1 Introduction
    1.1 Research Background
    1.2 Research Status
        1.2.1 Distributed computing platform Spark
        1.2.2 Hybrid Algorithm Recommendation System
        1.2.3 Hybrid Algorithm Recommendation System Challenges
    1.3 Research Content and Paper Structure
        1.3.1 Main Research Contents
        1.3.2 Paper Structure
2 Related Work
    2.1 Spark Distributed Computing Framework
        2.1.1 The Spark Overview
        2.1.2 Spark Design Concept
        2.1.3 Resilient Distributed Datasets
    2.2 Recommended System
        2.2.1 Concept of Recommended System
        2.2.2 Overview of Recommended Algorithms
        2.2.3 Collaborative Filtering Algorithm
        2.2.4 User-based Collaborative Filtering Recommendation
        2.2.5 Item-based Collaborative Filtering Recommendation
        2.2.6 Content-based Recommendation Algorithm
        2.2.7 Model-based Recommendation Algorithm
        2.2.8 Recommended System Evaluation Indicators
3 Hybrid Recommendation Systems Based on Spark Platform
    3.1 Current Status Analysis
    3.2 Hybrid Algorithm Recommendation Overall Architecture
    3.3 Data Module
    3.4 Algorithm Module
        3.4.1 Algorithm Module Design
        3.4.2 Mixed Weight Calculation Method (MWCM) Design
    3.5 Recommended Module
    3.6 Spark-based Recommendation Algorithm
        3.6.1 User-based Collaborative Filtering Algorithm
        3.6.2 Item-based Collaborative Filtering Algorithm
        3.6.3 Latent Factor Modle Algorithm
        3.6.4 Hybrid Recommendation Algorithmn
4 Experimental Evaluation
    4.1 Evaluation Indicators
    4.2 Recommended Algorithm Accuracy Test
        4.2.1 Impact of Data Size on Recommendation Accuracy
        4.2.2 Impact of Different Data Sets on Recommendation Accuracy
        4.2.3 Effect of Recommendation Algorithm on Recommendation Accuracy
    4.3 Distributed Framework Efficiency Test
        4.3.1 Spark Framework Efficiency Test
    4.4 Spark System Scalability Test
    4.5 Conclusion
5 Summary and Future Work
    5.1 Summary
    5.2 Future Work
References
Appendix A



本文編號:3374686

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/3374686.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7f697***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
免费一级欧美大片免费看| 国产户外勾引精品露出一区| 精品少妇人妻一区二区三区| 大尺度激情福利视频在线观看| 在线日韩中文字幕一区| 国产老熟女乱子人伦视频| 精品少妇一区二区视频| 91久久精品在这里色伊人| 欧美丝袜诱惑一区二区| 人人妻人人澡人人夜夜| 日韩欧美在线看一卡一卡| 免费福利午夜在线观看| 91日韩在线观看你懂的| 最近日韩在线免费黄片| 免费一级欧美大片免费看| 亚洲国产av在线视频| 国产精品一区二区香蕉视频| 久久99精品国产麻豆婷婷洗澡| 国产女优视频一区二区| 激情综合五月开心久久| 人妻精品一区二区三区视频免精 | 欧美午夜一区二区福利视频| 日韩熟妇人妻一区二区三区| 夜色福利久久精品福利| 国产精品一区日韩欧美| 东京热一二三区在线免| 国产成人精品久久二区二区| 成人精品一区二区三区在线| 国产精品国三级国产专不卡| 91麻豆精品欧美视频| 日韩aa一区二区三区| 欧美日韩国产欧美日韩| 日本午夜免费福利视频| 视频在线观看色一区二区| 日本加勒比系列在线播放| 国产熟女一区二区精品视频| 欧美精品一区二区三区白虎| 极品熟女一区二区三区| 91插插插外国一区二区婷婷| 日本黄色高清视频久久| 精品偷拍一区二区三区|