檢索優(yōu)化的媒體資源管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
文內(nèi)圖片:
圖片說明:圖2-l邋HSV顏色空間[24】逡逑
[Abstract]:With the rapid development of Internet technology, more and more digital assets are accumulated in the media industry. Media resource management (DAM) has become a research hot spot in the media industry. As an important function of media resource management, content-based multimedia content retrieval is gradually applied to DAM system. How to make comprehensive use of the low-level features of the extracted media materials to obtain better retrieval results? In order to solve this problem, a feature fusion model combining global features and local features is proposed in this paper. Based on the advantages of different features, a media resource management system with optimal retrieval effect is designed and implemented. Firstly, taking the image as an example, this paper studies the problems related to image feature extraction in content-based image retrieval, and proposes a retrieval method for fusion image local features and global features, in which the local features describe the image features with the word bag model based on SIFT descriptor, and the global features take the color space of the image as an example to describe the image, and the method is tested on the Corel1000 image retrieval test data set. The experimental results show that the image feature fusion can improve the overall retrieval accuracy of the system to a certain extent. Then, this paper makes a comparative study of the existing DAM system. On the basis of fully considering the design principles of expansibility, openness and flexibility of the system, the DAM system is designed by analyzing the functional modules and asset data structure of the system. Finally, the system is realized by using J2EE, MongoDB and other technologies, and the test of the retrieval function of the system and the analysis of the test results are completed. The applicability and reliability of the retrieval optimization DAM system are verified by the retrieval test results.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41;TP311.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張少博;全書海;石英;楊陽;李云路;程姝;;基于顏色矩的圖像檢索算法研究[J];計(jì)算機(jī)工程;2014年06期
2 武瑛;;DCT變換在圖像壓縮中的應(yīng)用[J];計(jì)算機(jī)與現(xiàn)代化;2013年04期
3 姚軍財(cái);;一種基于DFT的數(shù)字圖像壓縮算法[J];陜西理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年03期
4 郭士會(huì);楊明;;基于顏色的圖像檢索方法的研究[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
5 韋東興;陳曉云;徐榮聰;;基于角點(diǎn)檢測的圖像形狀特征提取方法[J];計(jì)算機(jī)工程;2010年04期
6 張露;閉金杰;林志源;諸葛雋;;基于顏色特征的圖像提取算法的研究[J];科技創(chuàng)新導(dǎo)報(bào);2008年33期
7 李璐;;我國媒體資產(chǎn)管理系統(tǒng)存在的問題與未來發(fā)展——以廣播電視臺(tái)為例[J];陜西師范大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);2008年S2期
8 宋麥玲;李歡;;一種基于HSV顏色空間的圖像檢索技術(shù)[J];電腦知識(shí)與技術(shù)(學(xué)術(shù)交流);2007年01期
9 蔡菲;蔡s,
本文編號(hào):2511678
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2511678.html